SATURN S-IVB-209 STAGE ACCEPTANCE FIRING REPORT DOUGLAS REPORT DAC-47475 AUGUST 1967 PREPARED BY: DOUGLAS AIRCRAFT COMPANY SATURN S-IVB TEST PLANNING AND EVALUATION COMMITTEE PREPARED FOR: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION UNDER NASA CONTRACT NAS7-101 APPROVED BY: A. P. O'NEAL DIRECTOR, SATURN DEVELOPMENT ENGINEERING #### ABSTRACT This report presents an evaluation of the Saturn S-IVB-209 stage acceptance firing that was conducted at the Sacramento Test Center on 20 June 1967. Included in this report are stage and ground support equipment deviations associated with the acceptance firing configuration. The acceptance firing test program was conducted under National Aeronautics and Space Administration Contract NAS7-101, and established the acceptance criteria for buyoff of the stage. #### DESCRIPTORS Saturn S-IVB-209 Stage Saturn S-IVB-209 Stage Test Evaluation J-2 Engine Complex Beta Countdown Operations Saturn S-IVB-209 Stage Acceptance Firing Saturn S-IVB-209 Stage Test Configuration Sacramento Test Center Sequence of Events # PREFACE The purpose of this report is to document the evaluation of the Saturn S-IVB-209 stage acceptance firing as performed by Douglas personnel at the Sacramento Test Center. This report, prepared under National Aeronautics and Space Administration Contract NAS7-101, is issued in accordance with line item 129 of the MSFC Data Requirements List 021, dated 15 September 1966. This report evaluates stage test objectives, instrumentation, and configuration deviations of the stage, test facility, and ground support equipment. # TABLE OF CONTENTS | Section | | | , | | • : | | | , | F | age | |---|--------|--------------------------------------|-----|-----|----------|----|-----|-----|-----|-----| | 1. | INTROI | OUCTION | • | | • | • | • 1 | • | • | 1-1 | | | 1.1 | General | | | | | | | • | 1-1 | | | 1.2 | Background | • | • | | • | • | • | • | 1-1 | | | 1.3 | Objectives | • | • | • | • | • | • | • | 1-1 | | 2. | SUMMAI | X | • | • | | • | • | • • | • | 2-1 | | | 2.1 | Countdown Operations | • | • | | • | • | • | • | 2-2 | | | 2.2 | J-2 Engine System | • | | | | • | • | | 2-2 | | | 2.3 | Oxidizer System | • | | | • | • | • | • | 2-2 | | | 2.4 | Fuel System | • | • | | • | • | •, | • | 2-2 | | | 2.5 | Pneumatic Control and Purge System | | | | • | • | • | • | 2-2 | | | 2.6 | Propellant Utilization (PU) System | • | | • | • | • | • | • | 2-2 | | | 2.7 | Data Acquisition System | | • | | • | • | • | • | 2-2 | | | 2.8 | Electrical Power and Control Systems | | | | | • | • | | 2-2 | | | 2.9 | Hydraulic System | • | | | ٠. | • | ٠, | • | 2-3 | | | 2.10 | Flight Control System | | | | ٠. | | | • | 2-3 | | | 2.11 | Structural System | • | • | | | | • | • | 2-3 | | a we consider the constant of | 2.12 | Thermoconditioning and Purge System | | | | | • | • | •, | 2-3 | | | 2.13 | Reliability and Human Engineering . | • | • | . ,. | • | | | • | 2-3 | | 3. | TEST (| CONFIGURATION | | •, | | | • | • | | 3-1 | | | 3.1 | Configuration Deviations | • | | | | • | • | • | 3-1 | | 4. | COUNT | DOWN OPERATIONS | • | • | • | : | | • | | 4-1 | | | 4.1 | Countdown 614084 (Run 1A, Run 1B) . | | | | | | | | 4-1 | | | 4.2 | Countdown 614085 (Run 2A) | | | :
• • | • | ٠. | • | • | 4-1 | | | 4.3 | Countdown 614086 (Special Tests) . | | | | | ٠. | | | 4-2 | | | 4.4 | Checkout | | | | • | | , | ٠. | 4-2 | | | 4.5 | Cryogenic Loading | • , | | | | | | • | 4-2 | | | 4.6 | GSE Performance | • | | | • | •. | | | 4-3 | | | 4.7 | Countdown Problem Summary | • | | . , | • | | | • | 4-3 | | | 4.8 | Atmospheric Conditions | • | | • : | | • | • | • , | 4-5 | | 5 | SEQUE | NCE OF EVENTS | • | • 3 | • • | | • | • | | 5-Ì | # TABLE OF CONTENTS (Continued) | Page | |---| | ENGINE SYSTEM | | 6.1 Engine Chilldown and Conditioning 6-1 | | 6.2 J-2 Engine Performance Analysis Methods and Instrumentation 6-2 | | 6.3 J-2 Engine Performance 6-2 | | 6.4 Engine Sequencing 6-6 | | 6.5 Component Operation 6-6 | | 6.6 Engine Vibration 6-7 | | OXIDIZER SYSTEM | | 7.1 Pressurization Control | | 7.2 Cold Helium Supply | | 7.3 J-2 Heat Exchanger | | 7.4 LOX Pump Chilldown | | 7.5 Engine LOX Supply | | 7.6 LOX Tank Vent and Relief Valve Performance 7-5 | | FUEL SYSTEM . : | | 8.1 Pressurization Control 8-1 | | 8.2 LH2 Pump Chilldown 8-1 | | 8.3 Engine LH2 Supply 8-2 | | 8.4 LH2 Vent and Relief Valve Performance 8-3 | | PNEUMATIC CONTROL AND PURGE SYSTEM 9-1 | | 9.1 Pneumatic Control | | 9.2 Ambient Helium Purges 9-1 | | PROPELLANT UTILIZATION SYSTEM 10-1 | | 10.1 PU System Calibration | | 10.2 Propellant Loading | | 10.3 Propellant Mass History | | 10.4 Propellant Residuals | | 10.5 PU System Response | | | # TABLE OF CONTENTS (Continued) | Section | Page | |---------|--| | 11. | DATA ACQUISITION SYSTEM | | | 11.1 Instrumentation System Performance 11-1 | | | 11.2 Telemetry System Performance 11-2 | | | 11.3 RF System Performance | | | 11.4 Electromagnetic Compatibility 11-3 | | | 11.5 Emergency Detection System Measurements 11-3 | | | 11.6 Hardwire Data Acquisition System Performance | | 12. | ELECTRICAL POWER AND CONTROL SYSTEMS 12-1 | | | 12.1 Electrical Control System | | | 12.2 APS Electrical Control System 12-4 | | | 12.3 Electrical Power System | | | 12.4 Special Depletion Sensor Test 12-6 | | 13. | HYDRAULIC SYSTEM | | | 13.1 Hydraulic System Operation | | | 13.2 System Pressure at Salient Times 13-1 | | | 13.3 Reservoir Level at Salient Times | | | 13.4 Temperature History | | | 13.5 Engine Side Loads | | | 13.6 Hydraulic Fluid Flowrates | | | 13.7 Auxiliary Pump Motor Voltage and Current 13-3 | | | 13.8 Thrust Offset | | 14. | FLIGHT CONTROL SYSTEM | | | 14.1 Actuator Dynamics 14-1 | | | 14.2 Engine Slew Rates | | | 14.3 Differential Pressure Feedback Network 14-2 | | | 14.4 Cross Axis Coupling | | 15. | STRUCTURAL SYSTEMS | | | 15.1 Common Bulkhead | | | 15.2 LH2 Tank Interior | # TABLE OF CONTENTS (Continued) | Section | | Page | |----------|--|--------| | | 15.3 Exterior Structure | 15-2 | | | 15.4 Malfunction of LOX Tank Pressure Regulator | 15-2 | | 16. | THERMOCONDITIONING AND PURGE SYSTEMS | 16-1 | | | 16.1 Aft Skirt Thermoconditioning and Purge System | 16-1 | | | 16.2 Forward Skirt Environmental Control and Thermoconditioning System | 16-1 | | 17. | RELIABILITY AND HUMAN ENGINEERING | 17-1 | | | 17.1 Reliability Engineering | 17-1 | | | 17.2 Human Engineering | 17-1 | | | | | | | APPENDICES | | | | | | | Appendix | | | | 1. | ENGINE PERFORMANCE PROGRAM (PA49) | AP 1-1 | | 2. | ABBREVIATIONS | AP 2-1 | | | | | | | LIST OF TABLES | | | Table | | | | 1-1 | Milestones, Saturn S-IVB-209 Stage | 1-3 | | 3-1 | • • • | 3-5 | | 3-2 | S-IVB-209 Stage and GSE Acceptance Firing Orifices | 3-8 | | 3-3 | S-IVB-209 Stage Pressure Switches | 3-12 | | 4-1 | Terminal Countdown Sequence (CD 614085) | 4-7 | | 5-1 | Sequence of Events | 5-3 | | 6-1 | Thrust Chamber Chilldown | 6-7 | | | | | # LIST OF TABLES (Continued) | Table | Page | |--------|---| | 6-2 | Engine Control Sphere Performance 6-7 | | 6-3 | Comparison of Computer Program Results | | 6-4 | Data Inputs to Computer Programs 6-11 | | 6-5 | Engine Performance 6-13 | | 6-6 | Engine Thrust Variations 6-14 | | 6-7 | Engine Sequence | | 7-1 | LOX Tank Prepressurization Data | | 7-2 | LOX Tank Pressurization Data 7-8 | | 7-3 | J-2 Heat Exchanger Data | | 7-4 | LOX Chilldown System Performance | | 7-5 | LOX Pump Inlet Conditions | | 8-1 | LH2 Tank Prepressurization Data 8-5 | | 8-2 | LH2 Tank Pressurization Data 8-6 | | 8-3 | LH2 Chilldown-System Performance 8-7 | | 8-4 | LH2 Pump Inlet Conditions 8-8 | | 11-1 | Instrumentation System Performance Summary | | 11-2 | Inactive Measurements | | 11-3 | Measurement Discrepancies | | 11-4 |
Telemetry to Hardwire Data Comparison (T ₀ +213 sec) | | 11-5 | Hardwire Data Acquisition System | | 17-1 | Flight Critical Components Malfunctions | | AP 1-1 | Program PA49 Printout Symbols AP 1-3 | | AP 1-2 | Engine Performance Program (PA49) AP 1-4 | | AP 2-1 | Abbreviations AP 2-1 | # LIST OF ILLUSTRATIONS | Figure | 그 그는 그 이번 아이는 물리를 먹는 하면데만 하는 이번 백년 모였다. | Page | |--------|--|--------| | 3-1 | Propulsion System Configuration and Instrumentation | . 3-13 | | 3–2 | Facility Propellant and Pneumatic Loading | | | | Systems | | | 4–1 | LOX Tank Loading | . 4-9 | | 4–2 | LH2 Tank Loading | . 4-10 | | 4–3 | Cold Helium System Loading | . 4-11 | | 4-4 | GSE Performance During Engine Start Sphere Chilldown and Loading | . 4-12 | | 4-5 | GSE Performance During Engine Control Sphere Loading | . 4-13 | | 4-6 | GSE Performance During LOX and LH2 Tank Prepressurization | . 4-14 | | 4-7 | GSE Performance During Thrust Chamber Chilldown | 4-15 | | 6-1 | J-2 Engine System and Instrumentation | | | 6-2 | Thrust Chamber Chilldown | 6-22 | | 6-3 | LH2 Pump Performance During Engine Start | | | 6-4 | Engine Start and Control Sphere Performance | | | 6-5 | Engine Start Sphere Performance | | | 6-6 | J-2 Engine Chamber Pressure | | | 6–7 | J-2 Engine Injector Supply Conditions | | | 6–8 | LOX and LH2 Flowrate | | | 6–9 | J-2 Engine Pump Operating Characteristics | ** | | 6-10 | Turbine Inlet Operating Conditions | | | 6-11 | Gas Generator Performance | | | 6-12 | Engine Steady-State Performance | | | 6-13 | Specific Impulse versus Mixture Ratio | | | 6-14 | Total Accumulated Impulse After Engine Start Command | | | 6-15 | Engine Start Transient Characteristics | | | 6-16 | Thrust Variations | | | 6-17 | Total Accumulated Impulse After Engine Cutoff Command | | # LIST OF ILLUSTRATIONS (Continued) | Figure | | | | Page | |--------|---|-------|----|------| | 6-18 | Engine Cutoff Transient Characteristics | | | 6-42 | | 6- 19 | Engine Start Sequence | | | 6-44 | | 6- 20 | Engine Vibration | | | 6-45 | | 7-1 | LOX Tank Pressurization System | ٠ | | 7-15 | | 7-2 | LOX Tank Prepressurization Simulated Boost | | | 7-16 | | 7-3 | LOX Tank Pressurization System Performance | • | ٠. | 7-17 | | 7-4 | LOX Pressurization Module Start Transient Pressure | | ١. | 7-18 | | 7-5 | Cold Helium Supply | • . | • | 7-19 | | 7-6 | J-2 Heat Exchanger Performance | • | • | 7-20 | | 7-7 | LOX Pump Chilldown System Operation | | • | 7-21 | | 7-8 | LOX Pump Chilldown System Performance | | • | 7-22 | | 7-9 | LOX Supply System | | • | 7-23 | | 7–10 | LOX Pump Inlet Conditions | • | • | 7-24 | | 7-11 | LOX Pump Inlet Conditions During Firing | • | • | 7-25 | | 7–12 | Effect of LOX Mass Level on LOX Pump Inlet Temperature | | | 7-26 | | 8-1 | LH2 Tank Pressurization System | • , • | | 8-11 | | 8-2 | LH2 Tank Prepressurization System Performance | | | 8-12 | | 8-3 | LH2 Tank Pressurization System Performance | | • | 8-13 | | 8-4 | LH2 Pump Chilldown | | | 8-14 | | 8-5 | LH2 Pump Chilldown Characteristics | | | 8-15 | | 8-6 | LH2 Supply System | •: .• | | 8-16 | | 8-7 | LH2 Pump Inlet Conditions | • | | 8-17 | | 8-8 | LH2 Pump Inlet Conditions During Firing | | | 8-18 | | 8-9 | Effect of LH2 Mass Level on LH2 Pump Inlet Temperature | | | 8-18 | | 9-1 | Pneumatic Control and Purge System | | | 9-3 | | 9-2 | Pneumatic Control and Purge System Performance | | | 9-4 | | 10-1 | LOX Tank-to-Sensor Mismatch Normalized to Sensor End Points | • | 1 | .0-9 | | 10-2 | LH2 Tank-to-Sensor Mismatch Normalized to Sensor End Points | | 1 | 0-10 | # LIST OF ILLUSTRATIONS (Continued) | Figure | $oldsymbol{ ext{Page}}$ | |--------|--| | 10-3 | PU Valve Position | | 10-4 | PU Valve Position Reconstruction with PU System | | 12-1 | Gain Reduction | | 12-2 | Secure Range Safety Command System Data | | 12-3 | Aft Battery Voltage and Current Profiles | | 12-4 | Forward Battery Voltage and Current Profiles 12-10 | | 14-1 | Actuator Response (Gain) | | 14-2 | Actuator Response (Phase Lag) | | 14-3 | Actuator Differential Pressure (±2 deg Transient Response) | #### 1. INTRODUCTION # 1.1 General This report was prepared at the Douglas Huntington Beach Missile & Space Systems Division by the Saturn S-IVB Test Planning and Evaluation (TP&E) Committee for the National Aeronautics and Space Administration under Contract NAS7-101. Activities connected with the Saturn S-IVB-209 stage included a prefiring checkout and the acceptance firing. Checkout started at the subsystem level and progressed to completion with the integrated systems test and the simulated acceptance firing. The information contained in the following sections documents and evaluates all events and test results of the acceptance firing which was completed on 20 June 1967. The tests were performed at the Complex Beta, Test Stand I, Sacramento Test Center (STC). ### 1.2 Background The S-IVB-209 stage was assembled at the Huntington Beach Missile & Space Systems Division. A checkout was performed in the Vertical Checkout Laboratory (VCL) prior to shipping the stage to STC. The stage was delivered to STC on 10 March 1967 and installed on Test Stand I on 15 May 1967. The stage was ready for acceptance firing on 12 June 1967. The APS modules were shipped to the Santa Monica checkout laboratory for leak and functional checks. The modules were then shipped to Sacramento for stage interface checks. No confidence firings of these modules were scheduled. Table 1-1 lists the milestones of the Saturn S-IVB-209 stage events and dates of completion. #### 1.3 Objectives All test objectives outlined in Douglas Report No. SM-47459A, Saturn S-IVB-209 Stage Acceptance Firing Test Plan, dated February 1967 and revised 29 May 1967 were successfully completed. Stage acceptance objectives which provided maximum system performance evaluation were as follows: - a. Countdown control and operational capability verification - b. J-2 engine system performance verification - c. Oxidizer system performance verification - d. Fuel system performance verification - e. Pneumatic control system performance verification - f. Propellant utilization system performance verification - g. Stage data acquisition system performance verification - h. Stage electrical control and power system performance verification - i. Hydraulic system performance and J-2 engine gimbal control performance verification - j. Structural integrity verification - k. Auxiliary propulsion system stage interface compatibility verification - 1. Ambient repressurization system performance verification. TABLE 1-1 MILESTONES, SATURN S-IVB-209 STAGE | EVENT | COMPLETION DATE | |--|-----------------| | Tank Assembly | 8 July 1966 | | Proof Test | 26 July 1966 | | Insulation and Bonding | 6 Sept 1966 | | Stage Checkout and Join J-2 Engine | 28 Nov 1966 | | Systems Checkout | 7 Feb 1967 | | Ship to STC | 10 March 1967 | | Stage Installed on Test Stand | 15 May 1967 | | Ready for Acceptance Firing | 12 June 1967 | | Acceptance Firing | 20 June 1967 | | Propellant Loading for Special Tests | 23 June 1967 | | Abbreviated Postfire Checkout on Stand | 6 July 1967 | | Ready for Storage | 11 July 1967 | ### 2. SUMMARY The S-IVB-209 stage was acceptance fired on 20 June 1967 at Complex Beta, Test Stand I, Sacramento Test Center. The countdown was designated as CD 614085. The mainstage firing duration was 455.95 sec; engine cutoff was initiated through the PU processor when LOX was depleted below the 1 percent level. ### 2.1 Countdown Operations # 2.1.1 CD 614084 CD 614084 (run 1A) was initiated on 13 June and proceeded smoothly with only one anomaly; LH2 depletion sensor No. 1 cycled dry for 28 ms during LH2 loading at the 30 percent level. At 822.9 sec prior to simulated liftoff the "Engine Ready" scan received an ignition detection signal that was attributed to a temperature differential across the probe resulting from the thrust chamber chilldown. This halted the automatic program and the stage was secured automatically. A manual thrust chamber chilldown sequence was then conducted with no recurrence of the problem. Run 1B was initiated and during the start sequence, a switch selector complement error was received halting the automatic program and the stage was secured manually. At this point, the countdown was scrubbed. # 2.1.2 CD 614085 CD 614085 (run 2A) was initiated on 19 June 1967 and proceeded smoothly to a successful acceptance firing on 20 June 1967. The following anomalies were experienced during the countdown: - a. Shortly after engine start, an abnormal decrease was noted in the LOX tank ullage pressure as a result of a temporary anomaly in the LOX tank pressurization module. - b. ESC occurred 685 ms later than expected due to a slow opening of the LOX prevalve. This was attributed to the use of the new Sterer actuation control modules. The valve also exhibited an erratic talkback on the hardwire "CLOSED" indication during the postfiring special test. The prevalve was replaced. ### 2.2 J-2 Engine System The J-2 engine (S/N 2083) exhibited operational characteristics compatible with stage design requirements and consistent with prior test data and with the Engine Model Specification R-2158b. # 2.3 Oxidizer System Due to a malfunction of the LOX tank pressurization control module, LOX NPSH fell below the minimum acceptable level for a 20-sec period shortly after Engine Start Command; however, there were no detrimental effects to the J-2 engine or to the remainder of the acceptance firing. With the exception of the above anomaly, the oxidizer system performance was acceptable. ## 2.4 Fuel System The fuel system performed as designed and supplied LH2 to the engine LH2 pump inlet within the limits required for satisfactory engine performance. # 2.5 Pneumatic Control and Purge System
The pneumatic control and purge system performed satisfactorily throughout the acceptance firing. The helium supply to the system was adequate for both pneumatic valve control and purging; the regulated pressure was maintained within acceptable limits and all components functioned normally. # 2.6 Propellant Utilization (PU) System The PU system performed satisfactorily and accomplished all the design objectives. #### 2.7 Data Acquisition System The data acquisition system performed satisfactorily throughout the acceptance firing. One hundred and seventy five measurements were active of which 2 failed resulting in a measurement efficiency of 98.86 percent. #### 2.8 Electrical Power and Control Systems The electrical power and control systems performed satisfactorily throughout the acceptance firing. All firing objectives were satisfied and all system variables operated within design limits. # 2.9 Hydraulic System The hydraulic system operated properly supplying pressurized fluid to the servo-actuators. All specified test objectives were achieved and all system variables operated within design limits. # 2.10 Flight Control System The dynamic response of the hydraulic servo-thrust vector control system was measured while the J-2 engine was gimbaled during the acceptance firing. The performance of the pitch and yaw hydraulic servo control systems was satisfactory. # 2.11 Structural Systems Structural integrity of the stage was maintained for the vibration, temperature, and thrust load conditions of the acceptance firing. A postfiring visual inspection of the stage revealed no debonding or other structural defects resulting from cryogenic loading and firing. #### 2.12 Thermoconditioning and Purge System The thermoconditioning and purge system functioned properly during the acceptance firing. All system temperatures and flowrates were maintained within design limits. #### 2.13 Reliability and Human Engineering All malfunctions of Flight Critical Items were investigated and documented. A Human Engineering evaluation has been conducted in support of the acceptance firing. #### 3. TEST CONFIGURATION This section describes the stage and ground support equipment (GSE) deviations and modifications from the flight configuration affecting the acceptance firing. Additional details of specific system modifications are discussed in appropriate sections of this report. Details of the S-IVB-209 stage configurations are presented in Douglas Report No. 1B66532, S-IVB/IB Stage End-Item Test Plan. Figure 3-1 is a schematic of the S-IVB-209 stage propulsion system and shows the telemetry instrumentation transducer locations from which the test data were obtained. The functional components are listed in table 3-1. Hardwire measurements are noted in the appropriate subsystem schematics included in this report. The propulsion system orifice characteristics and pressure switch settings are presented in tables 3-2 and 3-3. J-2 engine S/N 2083 was installed. The propulsion GSE (figure 3-2) consisted of pneumatic consoles "A" and "B," two propellant fill and replenishing control sleds, a vacuum system console, and a gas heat exchanger. ## 3.1 Configuration Deviations Configuration deviations required for the acceptance firing are discussed in Douglas Report No. SM-47459A, Saturn S-IVB-209 Stage Acceptance Firing Test Plan. Significant configuration changes to the stage and GSE during the acceptance firing are discussed in the following paragraphs. ## 3.1.1 Propulsion System - a. Stage propellant vent and bleed systems were connected to the facility vent system. - b. The stage portions of the propellant and pneumatic quickdisconnects were replaced with hardlines. - c. A converging water-cooled diffuser was installed in the engine thrust chamber exit to reduce the possibility of sideloads induced by jet stream separation. d. A reusable J-2 engine ignition detection probe was installed in place of the S-IB expendable probe. # 3.1.2 Propellant Utilization System a. The propellant loading fast-fill sensors installed on the instrumentation probes were used in the indicating mode only. # 3.1.3 Electrical Power System - a. Model DSV-4B-170 battery simulators were used to supply stage internal power. - b. Model DSV-4B-727 primary battery simulators were used in place of primary flight batteries. # 3.1.4 Electrical Control System - a. The instrument unit and S-IVB/IB stage electrical interfaces were simulated by GSE. - b. Two Model DSV-4B-188B APS simulators were used to provide APS module electrical loads to the stage control signals. - c. The electrical umbilicals remained connected throughout the acceptance firing. #### 3.1.5 Data Acquisition System - a. The MSFC Basic Static Firing Measurement Program hardwire transducers were installed. - b. All instrumentation parameters without transducers, and those disconnected for hardwire usage, were left as open channels. - c. Measurement D0576 (LH2 Tank U11age Press) Strain gage flight transducer P/N 1B40242-509 was RF sensitive and was replaced by pot transducer P/N 1A72913-539. # 3.1.6 Forward Environmental Control System a. Fluid for the forward thermoconditioning system was supplied by Model DSV-4B-359 Servicer. # 3.1.7 Secure Range Safety Command System - a. The engine cutoff command output from Range Safety Systems 1 and 2 was disconnected and stowed. - b. Pulse sensors were attached to the output of the exploding bridgewire (EBW) firing units. # 3.1.8 Structural Systems - a. The main and auxiliary tunnel covers were not installed. - b. The stage was mounted on the Model DSV-4B-540 Dummy Interstage. ### 3.1.9 GSE and Facilities - a. Resistance wire fire detection system was installed for monitoring critical areas of the stage, GSE, and facilities. - b. GH2 leak detection system was installed for monitoring critical areas of the stage, GSE, and facilities. - c. Blast detectors were installed in the test area for monitoring ranges of 0 to 25 psi overpressure. - d. Model 742 static firing hazardous gas shield, thrust cone water spray Firex, cryogenic spill pan, forward skirt support ring and vent port covers were installed. - e. Model 601 flame resistant protective firing cover was installed to enclose the forward skirt area. - f. An auxiliary propellant tank pressurization system was installed using a GSE ambient helium source. - g. Model DSV-4B-618 Engine Unlatch Restrainer Links were installed to restrain the J-2 engine during start transient sideloads. - h. Two 0_2 content analyzers were installed in the thrust structure. TABLE 3-1 (Sheet 1 of 4) S-IVB-209 STAGE HARDWARE LIST | ITEM
NO.* | PART NO. | NAME | |---------------------------------------|----------------------|--| | 1 | 7851861-1 | Disconnect, LH2 tank pressurization | | 2 | 1B65673-1 | Valve, check, LH2 tank prepressurization line | | 3 | 7851823-503 | Disconnect, ambient helium fill | | 4 | 1B53817-505 | Valve, hand, 3-way, LOX vent and relief valve purge line | | 5 . | 1B53817 - 505 | Valve, hand, 3-way, LH2 and LOX fill and drain valves, nonpropulsive vent and LH2 chilldown valve purge line | | 6 | 1B51361-1 | Valve, check, LH2 fill and drain valve and nonpropulsive vent purge line | | 7 | 1B63206-1 | Orifice, ambient helium fill, 65 scfm | | 8 | 1B51361-1 | Valve, check, control helium fill | | 9 | 1A57350-507 | Module, control helium fill | | 10 | 1A49963-1 | Sphere, control helium, 4.5 std cu ft | | 1:1 | 1B68260-1 | Disconnect, LH2 tank vent | | 12 | 1B66932-501 | Disconnect, LH2 fill and drain | | 13 | 1B40622-505 | Orifice, LH2 fill and drain valve purge line, 15 scfm | | 14 | 1B66692-501 | Module, actuation control, LH2 fill and drain valve | | 14 A&B | 1B67481-1 | Valve, check, LH2 fill and drain valve actuation control module vent | | 15 | 1B41065-1 | Disconnect, common bulkhead vacuum system | | 16 | 1A48240-505 | Valve, LH2 fill and drain | | 17 | 1B66932-501 | Disconnect, LOX fill and drain | | 18 | 1B51361-1 | Valve, check, LOX fill and drain valve purge line | | 19 | 1B40622-505 | Orifice, LOX fill and drain valve purge line, 15 scim | | 20 | 1A48240-505 | Valve, LOX fill and drain | | 21 | 1B66692-501 | Module, actuation control, LOX fill and drain valve | | 21 A&B | 1B67481-1 | Valve, check, LOX fill and drain valve actuation control module vent | | . 22 | 7851844-501 | Disconnect, cold helium fill and LOX tank prepressurization | | 23 | 1B57781-505 | Module, cold helium dump | | 24 | 1B40824-507 | Valve, check, cold helium fill line | | 25 | 1B42290-505 | Module, LOX tank pressure control | | 26 | 1B40824-503 | Valve, check, cold helium fill and LOX prepressurization line | | 27 | 1A49991-1 | Plenum, LOX tank pressurization, 250 std cu in. | | 28 | 7851830-517 | Switch, pressure, LOX tank pressurization regulator backup, | | · · · · · · · · · · · · · · · · · · · | | P/U 465 +20, -15 psia, D/O 350 +20, -15 psia | ^{*} Indicates location in figures 3-1 and 3-2. TABLE 3-1 (Sheet 2 of 4) S-IVB-209 STAGE HARDWARE LIST | ITEM
NO.* | PART NO. | NAME | |--------------|-------------|---| | 29 | 1B63046-513 | Orifice, LOX tank pressurization, heat exchanger primary, 0.03218 in. ² | | 30 | 1B63047-513 | effective area Orifice, LOX tank pressurization, heat exchanger bypass, 0.02291 in. ² effective area | | 31 | DELETED | | | 32 | 1A49958-517 | Disconnect, mainstage OK pressure switch checkout | | 33 | 1A49958-519 | Disconnect, thrust chamber jacket purge and chilldown | | 34 | 1B43657-509 | Module, pneumatic power control | | 35 | 1A48857-501 | Plenum, control helium, 100 std cu in. | | 36 | 1B55200-505 | Module, LH2 tank pressure control | | | 1B64443-505 | Orifice, undercontrol mode, 0.0444 in. ² effective area | | | 1B64443-505 | Orifice, overcontrol mode, 0.0777 in. ² effective area | | |
1B64443-505 | Orifice, step flow, 0.1392 in. 2 effective area | | 37 | 1B51361-1 | Valve, check, LH2 nonpropulsive vent purge line | | 38 | 1B40622-501 | Orifice, LH2 nonpropulsive vent purge line, 1 scfm | | 39 | 1B59265-1 | Orifice, nonpropulsive vent, 2.180 in. dia | | 40 | 1B59265-1 | Orifice, nonpropulsive vent, 2.180 in. dia | | 41 | 7851860-537 | Switch, pressure, LH2 prepressurization and ground fill, P/U 34 psia, D/O 31 psia min | | 42 | 7851860-541 | Switch, pressure, LH2 flight control, P/U 29.5 psia, D/O 26.5 psia | | 43 | 1A67005-507 | Switch, pressure, LH2 tank orbital vent initiation, P/U 35.25 +0.75 psia, | | | | D/O 31 psia min | | 44 | 1B53817-505 | Valve, 3-way, LH2 tank pressure switch shutoff | | 45 | 1A49988-1 | Valve, directional control, LH2 vent | | 46 | 1A49591-531 | Valve, relief, LH2 tank, crack 40 psia max, reseat 37 psia min | | 47 | 1A48257-509 | Valve, vent and relief, LH2 tank, crack 39 psia max, reseat 36 psia min | | 48 * | . 1A48858-1 | Sphere, storage, cold helium (6 each) | | 49 | 1B58100-1 | Probe, LH2 temperature sensor | | , 50 | 1A48431-509 | Probe, LH2 mass sensor | | . 51 | 1A79603-509 | Probe, LOX temperature sensor | | . 52 | 1A48430-509 | Probe, LOX mass sensor | | 53 | 1A49421-501 | Pump, LH2 chilldown | ^{*} Indicates location in figures 3-1 and 3-2. TABLE 3-1 (Sheet 3 of 4) S-IVB-209 STAGE HARDWARE LIST | ITEM
NO.* | PART NO. | NAME | |--------------|----------------------|---| | 54 | 1A58854-1 | Orifice, LOX chilldown pump purge line, 600 sccm at 475 psid | | 55 | 1A58347-505 | Module, LOX chilldown pump purge | | 55A | 1B40622-511 | Orifice, LOX chilldown pump purge module bypass, 10 scim at 475 psid | | 56 | 1A49423-507 | Pump, LOX chilldown | | 57 | 1A49964-501 | Valve, check, LOX chilldown return line | | 58 | 7851847-535 | Switch, pressure, LOX chilldown pump purge regulator backup, P/U 53 psia max, | | | | D/O 49 psia min | | 59 | 114-109 | Valve, relief, LOX chilldown pump motor container, crack and reseat | | | (PESCO) | 65 to 85 psia | | 60 | 1A67913 - 1 | Valve, vent, LOX chilldown pump motor container | | 61 | 1A49965-521 | Valve, shutoff, LOX chilldown line | | 62 | 1A89104-509 | Flowmeter, LOX chilldown line | | 63 | 1A87749-1 | Strainer, LOX chilldown pump discharge | | 64 | 1A49968 - 509 | Prevalve, LOX | | 65 | 1B66692-501 | Module, actuation control, directional valve, LH2 vent | | 65 A&B | 1B67481-1 | Valve, check, directional valve actuation control module vent | | 66 | 1B66692-501 | Module, actuation control, LH2 vent and relief valve | | 66 A&B | 1B67481-1 | Valve, check, LH2 tank vent and relief valve actuation control module vent | | 67 | 1A49964-501 | Valve, check, LH2 chilldown return line | | 68 | · 1B53817-505 | Valve, 3-way, LOX tank pressure switch shutoff | | 69 | 7851847–533 | Switch, LOX prepressurization, flight, and ground fill control, | | | | P/U 40 psia max, D/O 37 psia min | | 70 | 1B40622-501 | Orifice, LOX tank pressure sensing line purge | | 71 | 1A49968-507 | Prevalve, LH2 | | . 72 | 1B66692-501 | Module, actuation control, prevalves and chilldown valves | | 72 A&B | 1B67481-1 | Valve, check, LOX vent and relief valve actuation control module vent | | 73 | 1B40622-507† | Orifice, LH2 chilldown shutoff valve purge line, 14 scfm | | 74 | 1A49965-523 | Valve, shutoff, LH2 chilldown pump discharge | | 75 | 1A89104-509 | Flowmeter, LH2 chilldown pump discharge | ^{*} Indicates location in figures 3-1 and 3-2. P/U = Pickup D/O = Dropout [†] Flight orifice--for acceptance firing, purge function is supplied by facility orifice 65 scfm at 1,600 psia TABLE 3-1 (Sheet 4 of 4) S-IVB-209 STAGE HARDWARE LIST | ITEM
NO.* | PART NO. | NAME | |--------------|-------------|--| | 76 | 1B53920-503 | Valve, check, LH2 chilldown pump discharge | | 77 | 1B52985-501 | Strainer, LH2 chilldown pump discharge | | 78 | 1B51361-1 | Valve, check, LOX vent and relief valve purge line | | 79 | 1B63206-1 | Orifice, flow, LOX vent and relief valve purge line, 65 scfm | | 80 | 1A49590-517 | Valve, relief, LOX tank, crack 45 psia, reseat 42 psia | | 81 | 1A48312-505 | Valve, vent and relief, LOX tank, crack 44 psia, reseat 41 psia | | 82 | 1B66692-501 | Module, actuation control, LOX vent and relief valve | | 83 | 1B56804-1 | Module, engine purge control | | 84 | 1A67002-509 | Switch, pressure, engine purge regulator backup, P/U 130 psia min, | | | | D/O 105 psia min | | 85 | 1A49958-521 | Disconnect, engine start sphere vent and relief valve drain | | 86 | 1A49958-515 | Disconnect, engine control helium sphere fill | | 87 | 1A49958-523 | Disconnect, engine start sphere fill | ^{*} Indicates location in figures 3-1 and 3-2. P/U = Pickup D/O = Dropout TABLE 3-2 (Sheet 1 of 3) S-IVB-209 STAGE AND GSE ACCEPTANCE FIRING ORIFICES | ITEM* | DESCRIPTION | ORIFICE SIZE OR
NOMINAL FLOWRATE | COEFFICIENT
OF DISCHARGE | EFFECTIVE
AREA (in. ²) | |----------|---|---|-----------------------------|---------------------------------------| | | STAGE | | | | | 7 | Ambient helium fill | 65 scfm | | Sintered | | 13 | LH2 fill and drain valve purge line | 15 scim at
3,200 psid | | Sintered | | 19 | LOX fill and drain valve purge line | 15 scim at
3,200 psig | | Sintered | | 29 | LOX tank pressurization system heat exchanger outlet | 0.219 in. dia | 0.85 | 0.03218 | | 30
36 | LOX tank pressurization system
heat exchanger bypass
LH2 tank pressurization module | 0,185 in. dia | 0.85 | 0.02291 | | | Undercontrol** | 0.257 in. dia | | 0.0444 | | | Overcontrol** | 0.223 in. dia | | 0.0777 | | | Step** | 0.323 in. dia | | 0.1392 | | 38 | LH2 tank nonpropulsive vent purge line | 1 scfm at
3,200 psid | | Sintered | | 29-40 | LH2 tank nonpropulsive vent (2) | 2.180 in. dia | | 3.1726 | | 54 | LOX chilldown pump purge line | 600 scim at
475 psid | <u></u> : | Sintered | | 55 | LOX chilldown pump purge
module | 0.00166 lb/sec
at 475 psig IN
and 85 psig OUT | †
 | | | 55A | LOX chilldown pump purge module bypass | 10 scim at
475 psid | | Sintered | ^{*} Indicates location in figures 3-1 and 3-2. ^{**} Discharge coefficient and effective area are calculated for overcontrol and step orifices in successive combination with the undercontrol orifice. [†] Flight orifice--for acceptance firing, purge function is supplied by facility orifice of 65 scfm at 1,600 psi. TABLE 3-2 (Sheet 2 of 3) S-IVB-209 STAGE AND GSE ACCEPTANCE FIRING ORIFICES | ITEM* | DESCRIPTION | ORIFICE SIZE OR
NOMINAL FLOWRATE | | EFFECTIVE
AREA (in. ²) | |-------|--|---|---------------|---------------------------------------| | 70 | LOX tank pressure sensing line purge | 1 scfm at
3,200 psig | | Sintered | | 73 | LH2 chilldown valve purge
line† | 14 scfm at
3,000 psid | | Sintered | | 79 | LOX tank vent and relief valve purge line | 65 scfm at
3,100 psid | † | 0.00043 | | 83 | Engine pump purge module | 0.00166 lb/sec
at 475 psig IN
and 85 psig OUT | , | 0.00023 | | | CONSOLE A | | | | | | All console A stage bleeds | Variable | | | | A9515 | Pressure actuated valve and mainstage pressure switch supply | 1.2 scfm | | Sintered | | A9526 | J-box inerting supply | 0.013 in. dia | | | | A9533 | LH2 system checkout supply | 1.2 scfm | | Sintered | | A9534 | LOX system checkout supply | 2.0 scfm | | Sintered | | A9535 | LH2 tank and umbilical purge | 0.260 in. dia | 0.88 | 0.0467 | | A9536 | Pressure switch checkoutlow pressure | 1.2 scfm | | Sintered | | A9537 | Pressure switch checkouthigh pressure | 0.044 in. dia | | | | A9538 | LH2 tank repressurization supply (ambient helium supply) | Union | | | | A9539 | Console A GN2 inerting supply | 0.013 in. dia | | | ^{*} Indicates location in figures 3-1 and 3-2. $[\]mbox{\dag}$ Flight orifice--for acceptance firing, purge function is supplied by facility orifice of 65 scfm at 1,600 psi. TABLE 3-2 (Sheet 3 of 3) S-IVB-209 STAGE AND GSE ACCEPTANCE FIRING ORIFICES | ITEM* | DESCRIPTION | ORIFICE SIZE OR
NOMINAL FLOWRATE | | EFFECTIVE
AREA (in. ²) | |-------|--|-------------------------------------|-----------|---------------------------------------| | | CONSOLE B | | | | | | All console B stage bleeds | Variable | | | | | Turbine start sphere supply | | | | | | LOX tank prepressurization supply | 0.096 in. dia | 0.94 | 0.00680 | | A9525 | Engine control sphere supply | 0.125 in. dia | 0.84 | 0.01031 | | A9527 | LH2 tank prepressurization | 0.161 in. dia | 0.94 | 0.0094 | | A9528 | Thrust chamber jacket purge and chilldown system | 0.072 in. dia | 0.89 | 0.00362 | | A9529 | LOX tank and umbilical purge | 0.305 in. dia | <u></u> - | | | A9540 | J-box inerting supply | 0.013 in. dia | | | | A9550 | Engine control sphere supply vent | | | | | A9552 | Turbine start sphere GH2 supply vent | 0.081 in. dia | 0.83 | 0.00479 | | OR395 | LH2 tank auxiliary pressuriza-
tion | 0.395 in. dia | | | | OR396 | LOX tank auxiliary pressuriza-
tion | 0.395 in. dia |
 | | ^{*} Indicates location in figures 3-1 and 3-2. TABLE 3-3 S-IVB-209 STAGE PRESSURE SWITCHES | PARAMETER | PART NO. | SPECIFIED
(psia) | | PRETEST
(psia) | | |---|-------------|---------------------|---------------------------------|-------------------|---------| | | | PICKUP | DROPOUT | PICKUP | DROPOUT | | LH2 Tank Pressurization System | | | | | | | Flight control | 7851860-541 | 30.0 max | 26.5 min | 29.26 | 27.17 | | Prepressurization and ground fill
valve control | 7851860-537 | 34.5 max | 30.8 min | 33.49 | 31.03 | | Orbital vent | 7851860-543 | 35.0 <u>+</u> 1 | 30.5 min | 35.24 | 31.92 | | LOX Tank Pressurization System | | | | | | | LOX prepress, flight control, and ground fill valve control | 7851847-533 | 41.0 max | 36.5 min | 40.02 | 37.57 | | LOX tank regulator backup | 7851830-517 | 467.5 <u>+</u> 23.5 | 352.5 <u>+</u> 23.5 | 458.3 | 355.4 | | Pneumatic Control System . | | | | | | | Power control module | 7851830-521 | · 600 <u>+</u> 21 | 490 <u>+</u> 31 | 599.1 | 499.2 | | LOX chilldown pump motor container | 7851847-535 | 54 max | 49 min | | | | Engine pump purge | 1A67002-509 | 130 max | 105 min | 125.0 | 114.3 | | J-2 Engine | | | | | | | Mainstage OK No. 1 | NA5-27453 | 515 <u>+</u> 30 | P/U minus
62.5 <u>+</u> 31.5 | 526.70 | 458.30 | | Mainstage OK No. 2 | NA5-27453 | 515 <u>+</u> 30 | P/U minus
62.5 <u>+</u> 31.5 | 529.41 | 465.50 | NOTES: All pressures listed are the average of three actuations. $\label{eq:potential} P/U = Pickup$ Figure 3-1. Propulsion System Configuration and Instrumentation Facility Propellant and Pneumatic Loading Systems (Sheet 1 of 2) Figure 3-2. Facility Propellant and Pneumatic Loading Systems (Sheet 2 of 2) ### 4. COUNTDOWN OPERATIONS The S-IVB-209 stage acceptance firing was successfully accomplished during CD 614085 on 20 June 1967. All phases of the acceptance firing countdown are reviewed and evaluated in the following paragraphs, which include discussions of the prefiring checkout, propellant loading, and ground support and facility operations. ## 4.1 Countdown 614084 (Run 1A, Run 1B) Countdown 614084 was initiated on 13 June and proceeded smoothly through propellant loading. Two firing attempts were made on 14 June. Run 1A proceeded to T_0 -822.9 sec when an erratic augmented spark igniter (ASI) ignition detection signal was received on the "Engine Ready" scan. The automatic count was halted and the stage was recycled automatically to T_0 -25 min. The problem was isolated to an overly sensitive ignition detection probe, and the system amplifier was adjusted slightly. The acceptance firing was also modified to avoid looking for ignition detection until after the probe had been chilled down. Run 1B was picked up at the initiation of terminal count, T_0 -25 min, at 1550 PDT and proceeded smoothly to the engine start sequence. When the computer sent the Switch Selector LOX Chilldown Pump Reset Command, it did not receive the proper complementary answer which would permit the command to be executed, and the test was manually cut off and the countdown terminated. ## 4.2 Countdown 614085 (Run 2A) Countdown 614085 was initiated on 19 June. Propellant loading proceeded smoothly, although LH2 depletion sensor No. 1 cycled three times. Terminal count was initiated at 1114 hr on 20 June, and the acceptance firing successfully completed. Cutoff was automatically initiated by the PU processor due to LOX depletion (1 percent residual) after 455.95 sec of mainstage operation. All systems operated properly with the exception of the LOX tank pressurization system, which is discussed in section 7. Specific countdown times are presented in table 4-1. ## 4.3 Countdown 614086 (Special Tests) After the acceptance firing, the stage was reloaded with propellants on 23 June to conduct additional tests on the LH2 chilldown system and the LH2 depletion sensors. The purpose of these tests was to investigate the effect of the LH2 chilldown duct fairing purge media upon the LH2 pump chilldown. The data obtained from these tests should provide some insight into the abnormal chilldowns that occurred during the S-IVB-207 and 208 acceptance firings. These data are presently being analyzed. () ## 4.4 Checkout The modifications, procedures, and checkouts performed for the acceptance firing were initiated on 10 March 1967, when the stage was received at the Sacramento Test Center, and continued through 12 June when the stage was ready for the acceptance firing. The handling and checkout procedures that were used for the prefiring and post-firing checkouts are described in Douglas Report DAC 56501, Narrative End Item Report on Saturn S-IVB-209, Volume 1, SSC, dated March 1967. After the prefire modifications and limited prefire checkout were performed at the Vertical Checkout Laboratory, the stage was installed on Complex Beta Test Stand I on 15 May. The prefire checkout of the stage was completed 4 weeks later; the "Ready for Acceptance Firing" milestone was met on 12 June 1967. # 4.5 Cryogenic Loading The S-IVB-209 stage was successfully loaded with LOX, LH2, and cold helium. # 4.5.1 LOX Loading The LOX loading procedures were conducted as specified in Task 41 of the Countdown Manual. Preparations were completed and computer controlled loading operations were initiated without incident. Loading data for CD 614085 are presented in figure 4-1. # 4.5.2 LH2 Loading The LH2 loadings were conducted as specified in Task 42 of the Countdown Manual and proceeded smoothly, although LH2 depletion sensor No. 1 cycled several times during CD 614085, run 2A. LH2 loading data for CD 614085 are presented in figure 4-2. ## 4.5.3 Cold Helium Loading Cold helium was loaded after the completion of LH2 loading. Satisfactory temperatures and pressures were attained although, due to a short chill-down period, the temperature was slightly higher than normal. Data from CD 614085 are presented in figure 4-3. ### 4.6 GSE Performance # 4.6.1 GH2 Supply System The GH2 supply system performed adequately. Start sphere chilldown and loading were satisfactorily accomplished. At Engine Start Command, the engine start sphere conditions were within the required limits. Data are presented in figure 4-4. ### 4.6.2 Helium Supply System The helium supply system functioned adequately. Propellant tank prepressurization, thrust chamber chilldown, cold helium spheres loading, and stage and engine control sphere loading were all satisfactorily accomplished. Following each prepressurization cycle the ambient helium supply pressure (D0778) shifted upward, due to a regulator shift. This has occurred on other firings and is not considered abnormal. Data are presented in figures 4-5 through 4-7. ### 4.7 Countdown Problem Summary ### 4.7.1 Countdown 614084 This countdown was aborted when no ignition was obtained at T_0 +150 sec, and manual cutoff was initiated when it was evident that a malfunction had occurred. The following problems were encountered: - a. While the bonnet screws on the LOX main fill valve were being torqued during Task 7, Propellant Transfer Lines Preparation and Controls Check, the valve cycled closed. Investigation of the closing of the valve revealed that it was closed from an interlock command sent during Task 9, Redline Checks. - b. During the terminal count, at T_0 -822.9 sec, the engine control bus power was lost and no power was on the engine bus. Investigation revealed that when the computer scanned the engine for a readiness check, it found power on the engine ignition detection circuit. The computer automatically turned off the engine control bus power and returned the count to T_0 -25 min, as programmed. A manual check of the situation could not duplicate the problem, so the countdown was restarted as run 1B. - c. During the terminal count of run 1B at T₀ +150 sec, or at the time of engine ignition, no ignition occurred and manual cutoff was initiated. Investigation revealed that when the computer program gave the command for LOX chilldown pump reset, it did not receive the complementary answer that would permit execution of the command. The test was manually cut off and the countdown was terminated. After considerable troubleshooting, three relays within the computer control equipment were replaced. Although the precise cause of the probable was not pinpointed, it is felt that the probable cause was a single, random malfunction in the response conditioner. # 4.7.2 Countdown 614085 Five problems were encountered during this countdown; however, none of the problems required a delay in countdown time. a. During Task 14, Abort Mode Checks, the forward bus No. 1 power supply malfunctioned because a defective fan system caused it to overheat. The unit was replaced. - b. During Task 39, LOX loading, the digital events recorder malfunctioned and required reloading. - c. The LH2 depletion sensor No. 1 cycled twice from wet to dry at the 31, 34, and 60 percent levels for durations of 7, 12, and 9 ms, respectively, then indicated normally. - d. The main LH2 storage tank shutoff valve, ROV-408, was reported to be leaking externally during the firing. - e. At approximately T_0 -1 hr, the safety cutoff-gas generator exhaust temperature measurement began to indicate erratically. # 4.8 Atmospheric Conditions The atmospheric conditions at specific times during the countdowns are presented in the following paragraphs. ## 4.8.1 Countdown 614084 | Time (PDT | 1000 | 1200 | 1400 | 1600 | |------------------------------|-------|-------|-------|-------| | Wind speed (knots) | 3 | 4 | 9 | 6 | | Wind direction (deg) | 200 | 290 | 280 | 270 | | Barometric pressure (in. Hg) | 29.85 | 29.84 | 29.82 | 29.78 | | Ambient temperature (deg F) | 75 | 79 | 85 | 88 | | Dew point (deg F) | 54 | 55 | 53 | 47 | # 4.8.2 Countdown 614085 | Time (PDT) | 0800 | 0900 | 1000 | 1100 | 1200 | |------------------------------|-------|-------|-------|-------|-------| | Wind speed (knots) | 3 | 4 | 4 | . 3 | 4 | | Wind direction (deg) | 170 | 200 | 200 | 260 | 210 | | Barometric pressure (in. Hg) | 29.91 | 29.89 | 29.88 | 29.86 | 29.86 | | Ambient temperature (deg F) | 61 | 65 | 70 | 75 | 79 | | Dew point (deg F) | 33 | 54 | 56 | 57 | . 56 | TABLE 4-1 TERMINAL COUNTDOWN SEQUENCE (CD 614035) | EVENT | TIME FROM T_0 (sec) | |---|-----------------------| | Start sphere purge supply OPEN . | -1230.144 | | Thrust chamber purge CLOSED | -1200.097 | |
Thrust chamber chilldown OPEN | -1199.966 | | Start sphere purge supply CLOSED | -873.332 | | Start sphere GH2 fill supply OPEN | -869.383 | | LOX chilldown pump ON | -598.228 | | LH2 chilldown pump ON | -595.057 | | LH2 prevalve CLOSED | -591.385 | | LOX prevalve CLOSED | -591.195 | | Start sphere GH2 fill CLOSED | -327.595 | | Start sphere supply vent OPEN | -327.458 | | LOX tank vent valve CLOSED | -160.672 | | LH2 tank vent valve CLOSED | -163.319 | | Cold helium regulator backup switch ENABLED | -92.493 | | LOX fill and drain valve CLOSED | -52.149 | | LH2 fill and drain valve CLOSED . | -51.087 | | LH2 directional vent to flight position | -31.951 | | Cold helium sphere supply OFF | -3.444 | | Engine control sphere fill CLOSED | -3.360 | | Simulated Liftoff (11:39:34.000) | 0 | | Engine pump purge OFF | 90.824 | | LH2 prevalve OPEN | 150.155 | | LOX prevalve OPEN | 150.570 | | LH2 chilldown pump OFF | 151.574 | | LOX chilldown pump OFF | 151.663 | | Engine Start Command | 151.847 | | LOX pressurization system ON | 152.709 | | Step pressurization | 452.057 | | Engine Cutoff Command | 610.682 | Figure 4-1. LOX Tank Loading Figure 4-2. LH2 Tank Loading 4-11 Figure 4-4. GSE Performance During Engine Start Sphere Chilldown and Loading Figure 4-5. GSE Performance During Engine Control Sphere Loading Figure 4-6. GSE Performance During LOX and LH2 Tank Prepressurization Figure 4-7. GSE Performance During Thrust Chamber Chilldown # 5. SEQUENCE OF EVENTS The S-IVB-209 stage acceptance firing sequence of events is presented in table 5-1. Event times from three data sources are included in the table. These sources were Digital Events Recorder (DER/CAT 57), PCM/FM Sequence (CAT 42), and PCM/FM Digital Tabulation (PCM/TAB/CAT 45). Accuracies of the listed events are as follows: | | DATA S | SOURCE | | ACCURACIES | | |-------|---------------------|----------|-----|------------|--| | Digit | al Events Recorder | (DER/CAT | 57) | +0, -1 ms | | | PCM/F | M | | | | | | 1 | Discrete Bi-Level (| (CAT 42) | | +0, -9 ms | | | 1 | Digital Tabulation | (CAT 45) | | | | | | Prime | | | +0, -9 ms | | | | Submultiplex | | | +0, -84 ms | | TABLE 5-1 (Sheet 1 of 9) SEQUENCE OF EVENTS | EVENT/RESULT OF COMMAND | SWITCH
SELECTOR | DECORDE | AL EVENT
R (CAT 57) | | M/FM
E (CAT 42) | | DIGITAL
ON (CAT 45) | |---|--------------------|----------|------------------------|----------|--------------------|----------|------------------------| | | CHANNEL | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | | Launch Automatic Sequence Start | | | | | - | | | | Auxiliary Hydraulic Pump ON | 28 | K0513 | -693.589 | | | | | | Auxiliary Hydraulic Pump Coast Mode OFF | 31 | K3890 | -694.332 | | | | | | LOX Chilldown Pump ON | 22 | K0519 | -598.228 | | | | | | LH2 Chilldown Pump ON | 58 | K0512 | -595.057 | | | | | | Engine Pump Purge Control Valve Open | 1 | | * . | | | | | | Command | 24 | К3890 | -92.493 | | | | | | Internal Power Transfer | | | | | | | | | Pwr Aft Bus 1 Int Transfer | | K0622 | -27.371 | | | | | | Pwr Aft Bus 2 Int Transfer | | K0623 | -27.118 | | | | | | Pwr Fwd Bus Int Transfer | | К0639 | -26.867 | | | | | | Simulated Liftoff (T ₀)* | | - | 0.000 | | | | | | Inflight Cal ON | | К3890 | 91.819 | | | | | | Inflight Cal OFF | | К3890 | 92.942 | | | | | | Ullage Rocket Chg ON Cmd | 54 | К3890 | 142.600 | | | | | $[*]T_0 = 1139:34.000 PDT$ TABLE 5-1 (Sheet 2 of 9) SEQUENCE OF EVENTS | EVENT/RESULT OF COMMAND | SWITCH
SELECTOR | | AL EVENT
R (CAT 57) | | M/FM
E (CAT 42) | | DIGITAL
ON (CAT 45) | |-------------------------|--------------------|----------|------------------------|----------|--------------------|----------|------------------------| | EVENT/RESOLT OF COMMEND | CHANNEL | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | | EBW Charge 1-1 | | | | | | M0032 | 143.3 | | EBW Charge 1-2 | | | | | | м0033 | 143.4 | | EBW Charge 2-1 | | ٠. | | | | м0034 | 143.5 | | EBW Charge 2-2 | | | | | | мооз5 | 143.3 | | EBW Charge 3-1 | | | | | | м0036 | 143.4 | | EBW Charge 3-2 | | | | | | м0037 | 143.3 | | Ullage Rocket Fire Cmd | 56 | к3890 | 146.893 | | | | | | EBW Fire 1-1 | | | | К0143 | 146.929 | м0032 | 146.9 | | EBW Fire 1-2 | | | | K0144 | 146.929 | м0033 | 146.9 | | EBW Fire 2-1 | | | | K0145 | 146.937 | м0034 | 146.9 | | EBW Fire 2-2 | | | | к0146 | 146.937 | м0035 | 146.9 | | EBW Fire 3-1 | | | | K0147 | 146.937 | M0036 | 146.9 | | EBW Fire 3-2 | | | | K0148 | 146.937 | м0037 | 146.9 | | Pre-Valve Open Cmd | | К0576 | 147.560 | | | | | | LH2 Pre-Valve Open | | K0540 | 150.155 | K0111 | 150.161 | | | | LOX Pre-Valve Open | | K0541 | 150.570 | K0109 | 150.578 | | | TABLE 5-1 (Sheet 3 of 9) SEQUENCE OF EVENTS | EVENT/RESULT OF COMMAND | SWITCH
SELECTOR | BECORDE | AL EVENT
R (CAT 57) | | M/FM
E (CAT 42) | | DIGITAL
ON (CAT 45) | |--|--------------------|---------|------------------------|----------|--------------------|----------|------------------------| | EVENT/RESULT OF GOTHERD | CHANNEL | | TIME (sec) | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | | LH2 Chilldown Pump OFF Cmd | 59 | K0512 | 151-574 | | | | | | Engine Cutoff OFF Cmd | 13 | K3890 | 151.372 | | | | · | | Engine Cutoff Command ON (Dropout) | | ко522 | 151.381 | K0140 | 151.387 | | | | Chilldown Pump Discharve Valve
Closed Cmd | | К0577 | | · | | | | | LH2 Chilldown Pump OFF | | К0512 | 151.574 | | | | | | LOX Chilldown Pump OFF Cmd | 23 | к3890 | 151.656 | | | | | | LOX Chilldown Pump OFF | | к0519 | 151.663 | | | | | | LOX Chilldown Valve Closed | | К0552 | 151.844 | | | | | | LH2 Chilldown Valve Closed | | K0551 | 151.556 | | | | | | Engine Start ON Cmd (ESC)* | 9 | к3890 | 151.847 | | | | | | Thrust Chamber Spark Sys ON | | K0454 | 151.850 | коо10 | 151.851 | | | | Gas Generator Spark ON | | K0455 | 151.850 | коо11 | 151.851 | | | | Helium Control Solenoid Energized | | K0531 | 151.850 | К0007 | 151.851 | | | | Engine Ready Signal OFF | | K0530 | 151.854 | K0012 | 151.920 | | | | Engine Start ON | | K0556 | 151.847 | | | | | $[*]ESC = T_0 + 151.847 sec$ TABLE 5-1 (Sheet 4 of 9) SEQUENCE OF EVENTS | EVENT/RESULT OF COMMAND | SWITCH
SELECTOR | RECORDER | AL EVENT
R (CAT 57) | | M/FM
E (CAT 42) | | DIGITAL
ON (CAT 45) | |--|--------------------|----------|------------------------|----------|--------------------|----------|--| | BVM(I) (IBOBI OI COIRIA) | CHANNEL | | TIME (sec) | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | | Ignition Phase Control Solenoid
Energ | | K0535 | 151.849 | к0006 | 151.851 | | | | Main Fuel Valve Closed (Dropout) | | К0632 | 151.902 | K0119 | | | | | Main Fuel Valve Open | | K0118 | | К0118 | 152.003 | | | | Ignition Detected | | К0537 | 152.044 | кооо8 | 152.043 | | | | Engine Start OFF Cmd | 27 | K3890 | 152.398 | | | | | | Engine Start OFF | | K0556 | 152.401 | | | | • The state of | | Start Tank Discharge Valve Close (Dropout) | | К0695 | 153.084 | ко123 | | | | | Start Tank Discharge Valve Open | | ко536 | 153.379 | K0122 | 153.253 | | | | LOX Tank Flight Pressure System ON Cmd | 103 | к3890 | 152.709 | | | | | | Mainstage Control Solenoid
Energized | | к0538 | 153.382 | K0005 | 153.385 | # # # T | | | Main Oxidizer Valve Closed (Dropout) | | к0633 | 153.468 | K0121 | | | | | Gas Generator Valve Closed (Dropout) | | к0631 | 153.482 | К0116 | | | | | Start Tank Discharge Valve Closed | | К0695 | 153.702 | K0122 | 153.503 | | | TABLE 5-1 (Sheet 5 of 9) SEQUENCE OF EVENTS | EVENT/RESULT OF COMMAND | SWITCH
SELECTOR | DECODOR | AL EVENT
R (CAT 57) | | M/FM
E (CAT 42) | | DIGITAL
ON (CAT 45) | |--|--------------------|----------|------------------------|----------|--------------------|----------|------------------------| | | CHANNEL | MEAS NO. |
TIME (sec) | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | | Gas Generator Valve Open | | K0457 | 153.617 | K0117 | 153.670 | | | | Oxidizer Turbine Bypass Valve Open
(Dropout) | | K0461 | 153.631 | K0124 | 153.678 | | - | | Oxidizer Turbine Bypass Valve
Closed | | K0463 | 153.828 | K0125 | 153.845 | | | | Mainstage Pressure Switch Depress B (Dropout) | | K0573 | | K0159 | 154.945 | - | | | Mainstage Pressure Switch Depress A (Dropout) | | K0572 | | K0158 | 154.945 | | | | Mainstage OK | | К0610 | 154.907 | K0014 | 154.920 | | | | Engine Burn No. 1 ON Cmd | 68 | к3890 | 154.858 | | | | | | Engine Burn No. 1 ON (LH2 Tnk Step Press Cont Sol) | | K0523 | 154.866 | | | | | | Main Oxidizer Valve Open | | к0459 | 155.522 | к0120 | 155.586 | | • | | Gas Generator Spark System ON (Dropout) | | K0455 | 156.679 | К0011 | 156.684 | | | | Thrust Chamber Spark System ON (Dropout) | | K0454 | 156.680 | коо10 | 156.684 | | | | PU Activate Cmd | 5 | к3890 | 158.047 | | | | | TABLE 5-1 (Sheet 6 of 9) SEQUENCE OF EVENTS | EVENT/RESULT OF COMMAND | SWITCH
SELECTOR | DECORDE | AL EVENT
R (CAT 57) | | M/FM
E (CAT 42) | | DIGITAL
ON (CAT 45) | |---------------------------------------|--------------------|----------|------------------------|----------|--------------------|----------|------------------------| | HVHAT, ABBORT OF GOTHER | CHANNEL | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | | PU Activate | | К0507 | 158.052 | · | | | | | Ullage Rocket Jettison Charge ON Cmd | 55 | к3890 | 176.078 | | | | | | EBW Charge 1 | | , | | | | мооз8 | 176.8 | | EBW Charge 2 | | | | | | м0039 | 176.8 | | Ullage Rocket Jettison Fire ON Cmd | 57 | К3890 | 179.209 | | | | | | Ullage Jettison Charge Cmd Reset | 88 | К3890 | 179.297 | | | | | | EBW Fire 1 | | | | К0149 | 179.269 | м0038 | 179.3 | | EBW Fire 2 | | | | K0150 | 179.269 | м0039 | 179.3 | | Ullage Jettison Fire Cmd Reset | 73 | К3890 | 179.384 | | | | | | Range Safety OFF Enable ON Cmd | 85 | К3890 | | | | | | | Auxiliary Hydraulic Pump OFF Cmd | 29 | К3890 | 337.489 | | | | | | Auxiliary Hydraulic Pump ON (Dropout) | | К0513 | 337.755 | | | | | | Auxiliary Hydraulic Pump ON Cmd | 28 | К3890 | 384.355 | | | | | | Auxiliary Hydraulic Pump ON | | K0513 | 384.439 | | | | | | First Burn Relay OFF Cmd | 69 | K3890 | 452.050 | | | | | TABLE 5-1 (Sheet 7 of 9) SEQUENCE OF EVENTS | EVENT/RESULT OF COMMAND | SWITCH
SELECTOR | DIGITAL EVENT
RECORDER (CAT 57) | | PCM/FM
SEQUENCE (CAT 42) | | PCM/FM DIGITAL
TABULATION (CAT 45) | | |--|--------------------|------------------------------------|------------|-----------------------------|------------|---------------------------------------|------------| | EVENT/RESSET OF COLUMN | CHANNEL | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | | First Burn Relay OFF | | К0523 | 452.057 | | | | | | Point Level Sensor ON Cmd | 97 | к3890 | | | | | | | Non Programmed Engine Cutoff Cmd Cutoff Signal Energized | | K0419 | 610.688 | | | | | | Ignition Phase Control Solenoid Energized (Dropout) | | K0535 | 610.685 | кооо6 | 610.687 | | | | Mainstage Control Solenoid Energized (Dropout) | | к0538 | 610.687 | K0005 | 610.687 | | | | Engine Cutoff ON Cmd | 12 | К3890 | | | | | | | Engine Cutoff Command ON (ECC)* | | K4797. | 610.682 | K0140 | 610.698 | | | | Main Oxidizer Valve Open (Dropout) | | K0633 | 610.882 | К0120 | 610.814 | | | | Gas Generator Valve Open (Dropout) | | K0631 | 610.867 | K0117 | 610.731 | | | | Main Fuel Valve Open (Dropout) | | К0632 | 610.992 | ко118 | 610.814 | | | | Engine Pump Purge Control Valve Open Cmd | 24 | К3890 | 611.332 | | | | | | Gas Generator Valve Closed | | K0631 | 610.849 | K0116 | | | | | Mainstage Pressure Switch B Depress | | К0573 | 610.852 | K0159 | 610.923 | | | $[*]ECC = T_0 +610.682 \text{ sec}$ TABLE 5-1 (Sheet 8 of 9) SEQUENCE OF EVENTS | EVENT/RESULT OF COMMAND | SWITCH
SELECTOR | DIGITAL EVENT
RECORDER (CAT 57) | | 1 | M/FM
E (CAT 42) | PCM/FM DIGITAL
TABULATION (CAT 45) | | |--------------------------------------|--------------------|------------------------------------|------------|----------|--------------------|---------------------------------------|------------| | | CHANNEL | | TIME (sec) | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | | Mainstage Pressure Switch A Depress | | K0572 | 610.857 | K0158 | 610.923 | | | | Main Oxidizer Valve Closed | | К0633 | 610.882 | K0121 | | | | | Main Fuel Valve Closed | | K0632 | 610.992 | К0019 | | | | | Fuel Pre-Valve Open (Dropout) | | ко5,40 | 612.089 | К0111 | 612.139 | | | | Oxidizer Pre-Valve Open (Dropout) | | K0541 | 612.091 | ко109 | 612.139 | | | | Fuel Pre-Valve Closed | | К0549 | 612.421 | К0112 | 612.473 | | | | Oxidizer Pre-Valve Closed | -e- | К0550 | 612.616 | ко110 | 612.639 | | | | Helium Control Solenoid De-energized | | K0531 | | K0007 | | | | | Coast Period ON Cmd | 79 | K3890 | | - | | | | | Engine Start OFF Command | 27 | K3890 | 612.175 | · | | | * | | LH2 Chilldown Pump OFF Command | 59 | K3890 | 612.412 | | | | | | LOX Chilldown Pump OFF Command | 23 | K3890 | 612.313 | | | | | | PU Activate OFF Cmd | 6 | K3890 | 613.817 | | | | | | PU Activate OFF | | K0507 | 613.820 | | | | | | PU Inverter and DC Power OFF Cmd | 8 | К3890 | | | | | | TABLE 5-1 (Sheet 9 of 9) SEQUENCE OF EVENTS | | • | SECONDER OF EVERYED | יייייייי איני זר | | | | | |---|---------|---------------------|---|----------|-----------------------------|----------|---------------------------------------| | EVENT/PRSIIT OF COMMAND | SWITCH | DIGITA
RECORDEF | DIGITAL EVENT
RECORDER (CAT 57) | PCN | PCM/FM
SEQUENCE (CAT 42) | | PCM/FM DIGITAL
TABULATION (CAT 45) | | | CHANNEL | MEAS NO. | MEAS NO. TIME (sec) MEAS NO. TIME (sec) MEAS NO. TIME (sec) | MEAS NO. | TIME (sec) | MEAS NO. | TIME (sec) | | Point Level Sensors Disarm Cmd | 86 | K3890 | 613.965 | | | | | | Ullage Jettison Charge Command
Reset | 88 | K3890 | 615,445 | | | | | | First Burn Relay OFF Command | . 69 | K3890 | 615.533 | | | | | | Ullage Jettison Fire Command Reset | 73 | K3890 | 615,620 | | \$ | | | | | | | · | | | | :::
:::::::::::::::::::::::::::::: | | | | | | | | | | ### 6. ENGINE SYSTEM The S-IVB-209 stage acceptance firing was performed with an uprated (230,000-lbf-thrust) Rocketdyne engine S/N 2083 (figure 6-1) mounted on the stage. The engine was manufactured in the designated configuration baseline for J-2 engines S/N 2077 and subs as described in the Rocketdyne configuration report (R-5788) and contained orifice diameters of 0.276 in. LOX and 0.481 in. LH2 in the gas generator feed system. The engine had a 1-sec start tank discharge valve timer in the engine control circuit and prior to the acceptance firing blank orifices were installed in the start tank refill system to prevent start tank refill. There were no other significant engine modifications affecting engine performance. ### 6.1 Engine Chilldown and Conditioning ## 6.1.1 Turbopump Chilldown Chilldown of the engine LOX and LH2 turbopumps was adequate to provide the conditions required for proper engine start. An analysis of the chilldown operations is presented in paragraphs 7.3 and 8.2. #### 6.1.2 Thrust Chamber Chilldown The thrust chamber skin temperature (figure 6-2) was 230 deg R at Engine Start Command (ESC), well within the engine start requirement of 260 ±50 deg R; this resulted in satisfactory start transient buildup characteristics for the LH2 pump (figure 6-3). Data are presented in table 6-1. Further information on the chilldown operation and ground support equipment supply system is presented in section 4. # 6.1.3 Engine Control Sphere Chilldown and Loading Engine control sphere conditioning was adequate (figure 6-4), and all objectives were satisfactorily accomplished. The engine start requirement of 2,000 to 3,450 psia was met. Significant control sphere performance data are presented in table 6-2. ### 6.1.4 Engine Start Sphere Chilldown and Loading Chilldown and loading of the engine GH2 start sphere met the requirements for engine start. Start sphere performance data are presented in figure 6-5. The GH2 supply system performance during start sphere chill-down and loading is described in section 4. The sphere warmup rate from sphere pressurization to blowdown was 2.87 deg R/min. Since the S-IVB-209 stage may be utilized in the orbital workshop program, and thus may have to be passivated in orbit, the start sphere was not repressurized during engine operation. # $6.2\,$ J-2 Engine Performance Analysis Methods and Instrumentation Engine performance for the acceptance firing was calculated by use of computer programs AA89, G105-1, and F823-1. Computer program PA49 presents the average performance results. Computer program PA53 was used to compute start and cutoff transient engine performance. A description of the operation and a comparison of the results of each program is presented in table 6-3. Data inputs to the computer programs with the applicable biases are shown in table 6-4. ## 6.3 J-2 Engine Performance The engine performance was satisfactory. Plots of selected data showing engine characteristics are presented in figures 6-6 through 6-11. The engine propellant inlet conditions are presented in sections 7 and 8. The engine performance levels were comparable, within the run-to-run deviations, to the levels established during the Rocketdyne stage acceptance firing series and the stage acceptance firing prediction. The performance profiles determined by the programs discussed in paragraph 6.2 are shown in figure 6-12; the composite values which constitute the final engine performance values are shown in table 6-5. Flow integral mass analysis indicates that 189,949 lbm of LOX and 36,856 lbm of LH2 were consumed between Engine Start Command and Engine Cutoff Command
(ECC). This value of propellant consumption will be further refined and presented in the flow integral cryogenic calibration report on the S-IVB-209 stage propellant utilization system. The analysis also indicates that the overall stage average thrust from the 90 percent performance level (ESC +3.799 sec) to engine cutoff (ESC +458.836 sec) was 212,412 lbf. The average mixture ratio and specific impulse were 5.192 and 426.8 sec, respectively, for the same time period. The variation of specific impulse with mixture ratio is shown in figure 6-13. The total impulse generated from Engine Start Command to Engine Cutoff Command was 97.67 X 10⁶ lbf-sec. Extrapolation of the propellant residuals as indicated by the point level sensors (2,311 lbm of LOX, 1,366 lbm of LH2) indicates that a LOX depletion cutoff would have occurred at ECC +5.148 sec. In that time, an additional 937,591 lbf-sec impulse would have been generated, making the total stage potential impulse from Engine Start Command to depletion cutoff 98.61 X 10⁶ lbf-sec, as compared to the predicted value of 98.53 X 10⁶ lbf-sec. The 0.08 percent deviation is within the predicted accuracy of approximately 1 percent. The 4.228 sec difference between the actual and predicted times is also within the prediction accuracy. ### 6.3.1 Start Transient The J-2 engine start transient was satisfactory. A summary of engine performance is presented in the following table: | | Acceptance Firing | Log Book | |---|-------------------|----------| | Time to 90 percent performance level (sec) | 3.799 | 3.48 | | Start Tank Discharge
Valve Command (sec) | ESC +1.083 | ESC +1.0 | | Thrust rise time (sec) | 2.439 | 2.00 | | Total impulse (1bf-sec) | 186,220 | 159,926* | | Maximum rate of thrust increase (lbf/sec) | 6,370 | 40,000** | ^{*} Based on stabilized thrust at null PU and standard altitude conditions (test No. 313-082) Thrust buildup to the 90 percent performance level (627 psia thrust chamber pressure for the uprated engine) was within the maximum and ^{**} Maximum allowable minimum thrust bands. The deviation in total impulse (log book) is due to longer thrust rise time (time from first indication of thrust to the 90 percent performance level) during the acceptance firing. The total impulse accumulated during the start transient is shown in figure 6-14. Figure 6-15 shows the thrust chamber pressure during start transient and the thrust buildup to the 90 percent performance level for the acceptance firing as determined by computer program PA53. As expected, thrust overshoot during the start transient did not occur. No correction was made on acceptance firing data for main LOX valve skin temperature, as these data are not available. ## 6.3.2 Steady-State Performance Satisfactory performance of the J-2 engine was demonstrated throughout the steady-state portion of the engine burn. No evidence of an engine performance shift was found in any of the engine instrumentation. Table 6-5 compares the overall average performance values during steady-state operation with the predicted performance values. The S-IVB-209 stage utilized an uprated (230,000 lbf thrust) J-2 engine which explains the high performance values. The deviation between the PU valve cutback time prediction and the actual PU valve cutback time is discussed in section 10. Engine thrust variations occurring during the acceptance firing are presented in table 6-6. These thrust variations are compared to the predicted acceptance firing thrust history and the Contract End Item (CEI) thrust variation limits for flight. The CEI limits do not apply to acceptance firing performance and are presented for reference only. The thrust variations will be modified by flight effects on stage operation. Figure 6-16 presents expanded thrust plots illustrating thrust variations noted during the following phases of engine operations: a. Hardover, or maximum engine mixture ratio operation (EMR = 5.5) The thrust variations during hardover operation were within the CEI limits for normal engine operation. Normal operating thrust variations during this period of engine burn are caused by stabilization of the engine and by stage perturbations, including the effects of variations in propellant supply environmental condition, and propellant tank pressurization requirements. # b. Transient from PU valve cutback +65 sec to ECC -70 sec Thrust variations during the transient period from PU valve cutback +65 sec to ECC -70 sec were within the CEI limits for normal engine operation. The thrust variations during this period were caused by stabilization of the engine after cutback and can be directly linked to movements of the PU valve. ### c. Final 70 sec of burn Thrust variations during the final 70 sec of engine burntime were within the CEI limits for normal engine operation. These thrust variations were mainly due to movements of the PU valve. These movements will be modified somewhat by flight effects on stage performance and by improved flight calibration of the PU system. #### 6.3.3 Cutoff Transient The time between engine cutoff, as received at the J-2 engine and monitored by event measurement K0539 (time of cutoff = T_0 +610.683 sec), and thrust decrease to 11,500 lbf was within the maximum allowable time of 800 ms for the acceptance firing as shown in the following table: | | Acceptance Firing | Log Book | <u>Allowable</u> | |------------------------------------|-------------------|----------|-----------------------| | Thrust decrease to 11,500 lbf (ms) | 370 | 359 | 340 <u>+</u> 30 | | Total impulse (lbf-sec) | 34,636* | 35,411** | 34,100 <u>+</u> 1,300 | ^{*} PU valve at -13.5 deg ^{**} PU valve at null position, standard altitude conditions, includes -2,400 lbf-sec correction for time bias due to inherent electronic circuitry system delays The performance values presented are in satisfactor, agreement with the log book and the Rocketdyne J-2 Engine Manual No. k-3825-1. The stage acceptance firing does not include a correction for main LOX valve skin temperature deviation from 0 deg F or PU valve deviation from null position. Figures 6-17 and 6-18 present the data for the accumulated cutoff impulse, thrust chamber pressure cutoff transient, and the cutoff thrust to the 11,500 lbf level, as calculated by computer program PA53. # 6.4 Engine Sequencing The engine sequencing was satisfactory throughout the acceptance firing and compatible with the engine logic and the acceptance firing test plan. Table 6-7 and figure 6-19 illustrate the event times recorded during the acceptance firing. The measured values are compared with nominal or log book values. Most of the disagreements between measured and log book values are insignificant and may be ascribed to sampling rate errors or effects of the liquids that are present during the acceptance firing but absent during log book testing. The opening time of the gas generator valve was slower than nominal, but this caused no ill effects to the firing. ### 6.5 Component Operation All components on the J-2 engine (S/N 2083) performed satisfactorily during the S-IVB-209 acceptance firing. The main LOX valve opened satisfactorily. The opening time data were as follows: | <u>Item</u> | Specification | Actual | |--------------------------|--------------------|--------| | First stage travel (ms) | 50 <u>+</u> 25 | 55 | | First plateau (ms) | 510 <u>+</u> 70 | 533 | | Second stage travel (ms) | 1,825 <u>+</u> 75 | 1,804 | | Total time (ms) | 2,385 <u>+</u> 170 | 2,392 | All times were within specifications, indicating nominal main LOX valve performance during valve opening. The valve closing time was 170 ms which was approximately 35 ms longer than the maximum specified; however, this did not contribute to any significant increase in cutoff transient impulse. The performance of the pumps, turbines, and gas generator were satisfactory. Data indicative of the performance of these components are shown in figures 6-9, 6-10, and 6-11, respectively. PU valve performance was also satisfactory and is discussed in section 10. The engine-driven hydraulic pump performed satisfactorily during the acceptance firing. The gimbal program was conducted between approximately ESC +69 and ESC +125 sec. Calculation made during the gimbal program showed the following hydraulic pump performance. | Time | from | ESC (see | c) | | 1 | Horsepower | Requ | ired (hp |) | |------|------|----------|----|--|---|------------|------|----------|---| | | 80 | | | | | | 6.4 | | | | | 101 | | | | | | 6.2 | | | This is point function data only and no extrapolations are to be made between the time points given. For times prior to ESC +69 sec and after ESC +125 sec, the required horsepower was 4.8. ## 6.6 Engine Vibration Five vibration measurements were monitored on the engine which included one at the LOX turbopump, one at the LH2 turbopump, and three on the combustion chamber dome. All measurements provided usable data and are shown as power spectral density plots (figure 6-20). The vibration levels at these locations were comparable to those measured on past acceptance firings. TABLE 6-1 THRUST CHAMBER CHILLDOWN | | S-IVB-209 | S-IVB-208 | S-IVB-207 | |--|-----------|-----------|-----------| | Engine Start Requirement (°R) | 260 ±50 | 260 ±50 | 260 ±50 | | Thrust Chamber Chilldown Initiated (sec)* | -1,200 | -1,201 | -1,200 | | Thrust Chamber Chilldown Terminated (sec)* | 128 | 127 | 127 | | Thrust Chamber Skin Temperature at End of Chilldown (°R) | 223 | 227 | 240 | | Thrust Chamber Temperature at Engine Start (°R) | 230 | 230 | 250 | *Time from simulated liftoff (T_0) TABLE 6-2 ENGINE CONTROL SPHERE PERFORMANCE | | TEMP | TEMPERATURE (°R) | (°R) | PRES | PRESSURE (psia) | ia) | MA | MASS (1bm) | | |--------------------------|----------------|------------------|--------------|--------------|-----------------|---------------|--------------
--------------|--------------| | PARAMETER | S-IVB
. 209 | S-IVB
208 | S-IVB
207 | S-IVB
209 | S-IVB
208 | S-IVB
207· | S-IVB
209 | S-IVB
208 | S-IVB
207 | | Engine Start Requirement | None | 290 | 290 ±30. | 2,000
to | 2,800
to | 000 | | l | 1 | | Engine Start Command | 289 | 270 | 296 | 2,877 | 3,144 | 3,264 | J.90 | 2.08 | 1.98 | | Engine Cutoff | *271 | 229 | 252 | 2,243 | 2,139 | 2,187 | 1.56 | 1.73 | 1.61 | | Total Helium Usage | 1 | ļ | l | ļ | 1 |
 | 0.34 | 0.35 | 0.37 | | | | - | | | | | | | | *The start sphere was not recharged. TABLE 6-3 COMPARISON OF COMPUTER PROGRAM RESULTS | PROGRAM | INPUT | METHOD | | RESULTS | |----------------|--|--|--|---| | AA89 | LOX and LH2 pump inlet pressures and temperatures, PU valve position, and engine tag values | Influence equations relate nominal inlet conditions to nominal performance. Using actual inlet | F
W _T | = 213,739 lbf
= 501.22 lbm/sec | | | | conditions, PU valve position and engine tag values, the actual performance is simulated. | I _{sp}
MR | = 426.59 sec
= 5.203 | | G105
Mode 3 | LOX and LH2 flowmeters, pump discharge pressures and temperatures, chamber pressures, chamber thrust area | Flowrates are computed from flowmeter data and propellant densities. The C_F is determined from equation $C_F = f \ (P_c, \ MR)$ and thrust is calculated from equation $F = C_F \ A_t \ P_c$. | F
W _T
I _{sp}
MR | = 211,812 1bf
= 498.05 1bm/sec
= 425.39 sec
= 5.206 | | F823
Mode 1 | Thrust chamber pressure, gas generator pressure, fuel injection temperature, fuel pump discharge temperature, fuel turbine inlet temperature | Total flows of the thrust chamber and gas generator are calculated as a function of respective chamber pressures. Mixture ratio of the chamber is calculated as a function of temperature rise of the fuel in the cooling jacket, and mixture ratio of the GG is calculated as a function of turbine inlet temperature. Thrust is calculated from the equation $F = C_F A_t P_C$. | F
W _T
I _{sp} : | = 211,686 1bf
= 494.48 1bm/sec
== 428.30 sec
= 5.166 | | PA53 | Thrust chamber pressure, chamber throat area | The CF is computed from equation $C_F = (P_c)$ and thrust is computed from equation $F = C_F A_t P_c$. The impulse is determined from integrated thrust. | | r to paragraphs 1 and 6.3.3. | TABLE 6-4 (Sheet 1 of 2) DATA INPUTS TO COMPUTER PROGRAMS | PARAMETER | PRO | OGRAM | SELECT | ION | REASON | BIAS | REASON | |-----------------------|--------|---------------|--------|------------|--|------------------|---| | Chamber Pres | | 05-1,
23-1 | D0524 | (H/W) | Appeared to be in better agreement with engine log book data | -0.28 | Psig +14.72 = psia P_{cmeas} -15 = P_{cact} (Rocketdyne estimation of P_{c} purge effect) | | | PAS | 53 | D0001 | | High sampling rate produced more realistic transient | 98.11
Percent | Adjusts P_c so that at ESC,
P_c Prog = P_c input; at
ESC +60 sec, P_c Prog =
P_c input -15 psi | | LH2 Injection | n F82 | 23-1 | C0646 | (H/W) | Only one available | 0 | | | LH2 Pump Dis
Press | ch G10 | 05-1 | D0008 | (T/M) | Agreed with engine log book data | 0 | | | LH2 Pump Dis | , | 05-1
23-1 | C0134 | (T/M) | T/M & H/W essentially the same. Used T/M | 0 | | | LOX Pump Dis
Press | ch G10 | 05-1 | D0009 | (T/M) | Less noisy | 0 | | | LOX Pump Dis | ch G10 | 05-1 | C0648 | (H/W) | Less noisy | 0 | | | LH2 Flowrate | G10 | 05-1 | F0002 | (T/M) | Less noisy | -41.82
gpm | Agree with actual pip count | | LOX Flowrate | G10 | 05-1 | F0001 | (T/M)
· | T/M & H/W essentially the same. Used T/M | +1.94
gpm | Agree with actual pip count | H/W - Hardwire T/M - Telemetry TABLE 6-4 (Sheet 2 of 2) DATA INPUTS TO COMPUTER PROGRAMS | PARAMETER | PROGRAM | PROGRAM SELECTION | REASON | BIAS | REASON | |---------------------------|---------|-------------------|---|---------|---| | LH2 Pump Inlet
Press | AA89 | D0536 (H/W) | T/M transducer affected by pump chilldown | +15.917 | Psig +14.72 = psia.
Add 1.197 for dynamic head | | LH2 Pump Inlet
Temp | AA89 | C0003 (I/M) | T/M & H/W essentially the same. Used T/M | -0.3 | 0 adjustment | | LOX Pump Inlet
Press | AA89 | D0537 (H/W) | Less noisy | +17.20 | Psig +14.72 = psig.
Add 2.48 for dynamic head | | LOX Pump Inlet
Temp | AA89 | C0004 (T/M) | T/M & H/W essentially the same. Used T/M | 0 | | | Gas Generator
Pc | F823 | D0010 (T/M) | Less Noisy | 0 | | | LH2 Turbine
Inlet Temp | F823 | C0001 (I/M) | C0001 (T/M) H/W not available | 0 | | | PU Valve
Position | AA89 | G0010 (T/M) | T/M & H/W essentially the same. Used T/M | 0 | | | | | | | | | H/W - Hardwire T/M - Telemetry TABLE 6-5 ENGINE PERFORMANCE | | CI | OSED PU VA | | REFERE | NCE MIXTUI | | OVER | ALL PERFORM | 1ANCE | |--------------------------|---------|------------|----------------------|---------|------------|----------------------|---------|-------------|----------------------| | PARAMETER | ACTUAL | PREDICTED | PERCENT
DEVIATION | ACTUAL | PREDICTED | PERCENT
DEVIATION | ACTUAL | PREDICTED | PERCENT
DEVIATION | | Thrust (lbf) | 229,885 | 230,756 | 0.4 | 186,683 | 186,988 | 0.2 | 212,412 | 214,300 | 0.9 | | Total flowrate (1bf/sec) | 540.43 | 542.70 | 0.4 | 435.33 | 435.77 | 0.1 | 497.92 | 502,46 | 0.9 | | LOX flowrate (1bm/sec) | 457.76 | 460.06 | 0.5 | 358.88 | 359.70 | 0.2 | 417.69 | 422.28 | 1.1 | | LH2 flowrate (1bm/sec) | 82.67 | 82.64 | 0.04 | 76.45 | 76.03 | 0.6 | 80.23 | 80.18 | 0.1 | | Engine mixture ratio | 5.537 | 5.567 | 0.5 | 4.694 | 4.731 | 0.8 | 5.192 | 5.251 | 1.1 | | Specific impulse (sec) | 425.37 | 425.20 | 0.04 | 428.84 | 429.13 | 0.1 | 426.76 | 426.68 | 0.02 | TABLE 6-6 ENGINE THRUST VARIATIONS | TIME PERIOD | LIMITS | HARDOVER | TRANSIENT FROM PU VALVE CUTBACK +65 sec TO ECC -70 sec | FINAL 70 sec
OF BURN | |--|------------|---------------|--|-------------------------| | Variation in mean thrust level (lbf) or thrust band centerline variation | Allowable* | <u>+</u> 4000 | +6000
-5000 | <u>+</u> 6000 | | at ECC -70 sec (1bf) | Actual | 830 | 790 | 500 | | | Predicted | | | | | Oscillations about mean thrust | Allowable | <u>+</u> 2500 | <u>+</u> 7500 | <u>+</u> 3000 | | level (lbf) or thrust variation band (lbf) | Actual | <u>+</u> 1090 | <u>+</u> 1710 | <u>+</u> 490 | | Bana (181) | Predicted | <u>+</u> 740 | <u>+</u> 325 | <u>+</u> 390 | | Rate of change of thrust (lbf/sec) | Allowable | <u>+</u> 500 | <u>+</u> 500 | <u>+</u> 500 | | | Actual | +435 | -370 | +87 | | | Predicted | +35 | +29 | +40 | | Thrust acceleration (lbf/sec) | Allowable | <u>+</u> 125 | <u>+</u> 350 | <u>+</u> 350 | | | Actual . | +108 | +32.1 | -16.8 | | | Predicted | +6 | +2.7 | 4.5 | | Thrust band slope (lbf/sec) | Allowable | | | +115
-60 | | | Actual | | | +1.0 | | | Predicted | | | +6.5 | | Variation of thrust band slope about | Allowable | | | <u>+</u> 35 | | nominal (1bf/sec) | Actual | | | 5.5 | | | Predicted | | | | ^{*} Allowable limits are quoted from Specification Change Notice No. 7, dated 1 June 1967, and assume a nominal PU cutback at ESC +250 sec. TABLE 6-7 (Sheet 1 of 6) ENGINE SEQUENCE | | CONTROL EVENTS | C | CONTINGENT EVENTS | NOMINAL TIME FROM | | JAL TIME
(ms) | |------------------|---------------------------|------------------|---|------------------------|-------------|--------------------------------| | MEAS
NO. | EVENT AND COMMENT | MEAS
NO. | EVENT AND COMMENT | SPECIFIED REFERENCE | FROM
ESC | FROM
SPECIFIED
REFERENCE | | K0021
(K0021) | *Engine Start Command P/U | | | 0 | 0 | 0 | | | | K0007
(K0531) | Helium Control
Solenoid Engr P/U | Within 10 ms of K0021 | 3 | 3 | | · | | K0010
(K0454) | Thrust Chamber Spark on P/U | Within 10 ms of K0021 | 3 | 3 | | | | K0011
(K0455) | Gas Generator Spark on P/U | Within 10 ms of K0021 | 3 | 3 | | | | K0006
(K0535) | Ignition Phase Control
Solenoid Engr P/U | Within 20 ms of K0021 | 2 | 2 | | | | K0012
(K0530) | Engine Ready D/O | Within 20 ms of K0006 | 7 | 5 | | • . | | K0126
(K0558) | LOX Bleed Valve Closed P/U | Within 130 ms of K0007 | 62 | 59 | | | | K0127
(K0557) | LH2 Bleed Valve Closed P/U | Within 130 ms of K0007 | 49 | 46 | | | | K0020
(K0627) | ASI LOX Valve Open P/U | Within 20 ms of K0006 | 39. | 37 | (KOXXX) Actual number from acceptance firing event recorder. ^{*}Engine ready and stage separation signals (or simulation) are required before this command will be executed. This command also actuates a 640 ± 30 ms timer which controls energizing of the start tank discharge solenoid valve (K0096). TABLE 6-7 (Sheet 2 of 6) ENGINE SEQUENCE | | CONTROL EVENTS | ć | CONTINGENT EVENTS | NOMINAL TIME FROM | | UAL TIME (ms) | |------------------|---|------------------|-------------------------------------|---------------------------------|-------------
--------------------------------| | MEAS
NO. | EVENT AND COMMENT | MEAS
NO. | EVENT AND COMMENT | SPECIFIED REFERENCE | FROM
ESC | FROM
SPECIFIED
REFERENCE | | | | К0119
(G0506) | Main Fuel Valve Closed | 60 <u>+</u> 30 ms from K0006 | 39 | 37 | | | | K0118
(G0506) | Main Fuel Valve Open
P/U | 80 <u>+</u> 50 ms from K0119 | 121 | 82 | | K0008
(K0537) | *Ignition Detected | · | | Within 250 ms of K0021 P/U | 197 | 197 | | K0021
(K0021) | **Engine Start Command D/O | | | Approx 200 ms from K0021 P/U | 219 | 219 | | K0096
(K0536) | ***Start Tank Disc
Control Solenoid Engr | · | | 1,000 <u>+</u> 40 ms from K0021 | 1,083 | 1,083 | | | | K0123
(G0508) | Start Tank Disc Valve
Closed D/O | 100 <u>+</u> 20 ms from K0096 | 1,216 | 133 | | | | K0122
(G0508) | Start Tank Disc Valve Open P/U | 105 <u>+</u> 20 ms from K0123 | 1,353 | 137 | | К0005
(К0538) | Mainstage Control
Solenoid Engr | | | 450 <u>+</u> 30 ms from K0096 | 1,535 | 452 | ^{*}This signal must be received within 1,110 ± 60 ms of K0021 P/U or cutoff will be initiated. (KOXXX) Actual number from acceptance firing event recorder. ^{**}This signal drops out after a time sufficient to lock in the engine electrical. ^{***}An indication of fuel injection temperature of -150 ± 40 deg F (or simulation) is required before this command will be executed. This command also actuates a 450 ± 30 ms timer which controls the start of mainstage. TABLE 6-7 (Sheet 3 of 6) ENGINE SEQUENCE | | CONTROL EVENTS | . (| CONTINGENT EVENTS | NOMINAL TIME FROM | | UAL TIME (ms) | |------------------|--|--------------------------|---|----------------------------------|-------------|--------------------------------| | MEAS
NO. | EVENT AND COMMENT | MEAS
NO. | EVENT AND COMMENT | SPECIFIED REFERENCE | FROM
ESC | FROM
SPECIFIED
REFERENCE | | | | К0096
(К0536) | Start Tank Disc
Control Solenoid Engr
D/O | 450 <u>+</u> 30 ms from K0096 | 1,532 | 449 | | | | К0121
(G050 7) | Main LOX Valve Closed D/O | 60 <u>+</u> 30 ms from K0005 | 1,580 | 45 | | | | K0116
(G0509) | Gas Generator Valve
LOX side first motion | 140 <u>+</u> 10 ms from K0005 | 1,710 | 5 | | | | K0122
(G0508) | Start Tank Disc Valve
Open D/O | 95 ±20 ms from K0096
D/0 | 1,617 | 534 | | , | | K0117
(G0509) | Gas Generator Valve
Open P/U | 50 <u>+</u> 30 ms from K0116 | 1,811 | 151 | | | | K0124
(G0510) | LOX Turbine Bypass
Valve Open D/O | | 1,720 | | | | a | | LOX Turbine Bypass
Valve 80% Closed | 400^{+150}_{-50} ms from K0122 | 1,977 | 360 | | | vi | K0123
(G0508) | Start Tank Disc Valve
Closed P/U | 250 <u>+</u> 40 ms from K0122 | 1,884 | 267 | | ₹
•
11 44 | 4 | K0125
(G0510) | *LOX Turbine Bypass
Valve Closed P/U | | 2,028 | | | K0158
(K0572) | Mainstage Press Switch No. 1 Depress D/O | | | | 3,061 | | ^{*}Within 5,000 ms of K0005 (Normally = 500 ms) (K0XXX) Actual number from acceptance firing event recorder. TA. 6-7 (Sheet 4 of 6) · ENGINE SEQUENCE | CONTROL EVENTS | | C | CONTINGENT EVENTS | NOMINAL TIME FROM | ACTUAL TIME (ms) | | | |------------------|---|------------------|---|-----------------------------------|------------------|--------------------------------|--| | MEAS
NO. | EVENT AND COMMENT | MEAS
NO. | EVENT AND COMMENT | SPECIFIED REFERENCE | FROM
ESC | FROM
SPECIFIED
REFERENCE | | | K0159
(K0573) | Mainstage Press Switch
No. 2 Depress D/O | | | | 3,069 | | | | K0191
(K0610) | *Mainstage OK | | | | 3,060 | | | | | | К0120
(G0507) | Main LOX Valve Open
P/U | 2,435 ±35 ms from K0005 | 3,965 | 2,430 | | | | | КОО1О
(КО454) | Thrust Chamber Spark
on D/O | 3,300 ±200 ms from K0005 P/U | 4,833 | 3,298 | | | | • | К0011
(К0455) | Gas Generator Spark On D/O | 3,300 ±200 ms from K0005 P/U | 4,832 | 3,297 | | | K0507
CSS-22 | PU Activate Switch P/U | | | | 6,205 | | | | K0013
(K0539) | Engine Cutoff P/U (New Time Reference) | | | 0 | 0 | 0 | | | | | K0005
(K0538) | Mainstage Control
Solenoid Engr D/O | Within 10 ms of K0013 | 4 | 4 | | | | | K0006
(K0535) | Ignition Phase Control
Solenoid Engr D/O | Within 10 ms of K0013 | 2 | 2 | | | | | K0020
(K0627) | ASI LOX Valve Open D/O | | 22 | | | | · · | | K0120
(G0507) | Main Oxidizer Valve
Open D/O | 50 <u>+</u> 15 ms from K0005 | 75 | 71 | | | 4 | | K0117
(G0509) | Gas Generator Valve Open D/O | $75 + 25 \atop -35$ ms from K0006 | 23 | 21 | | ^{*}One of these signals must be received within $4,410 \pm 260$ ms from K0021 P/U, or cutoff will be initiated. Signal occurs when LOX injection pressure is 500 ± 30 psig. ⁽KOXXX) Actual number from acceptance firing event recorder. TABLE 6-7 (Sheet 5 of 6) ENGINE SEQUENCE | CONTROL EVENTS | | C | ONTINGENT EVENTS | NOMINAL TIME FROM | ACTUAL TIME (ms) | | | |------------------|--|------------------|-----------------------------------|----------------------------------|------------------|--------------------------------|--| | MEAS
NO. | EVENT AND COMMENT | MEAS
NO. | EVENT AND COMMENT | SPECIFIED REFERENCE | FROM
ESC | FROM
SPECIFIED
REFERENCE | | | | | K0118
(G0506) | Main Fuel Valve Open
D/O | 90 <u>+</u> 25 ms from K0006 | 100 | 98 | | | | | | Main Oxidizer Valve
Closed P/U | 120 <u>+</u> 15 ms from K0120 | 240 | 165 | | | | | K0116
(G0509) | Gas Generator Valve
Closed P/U | 500 ms from K0006 | 385 | 383 | | | | | K0119
(G0506) | Main Fuel Valve Closed | 225 <u>+</u> 25 ms from K0118 | 377 | 277 | | | K0158
(K0572) | *Mainstage Press Switch
A Depress P/U | | | | 174 | | | | K0159
(K0573) | Mainstage Press Switch
B Depress P/U | | | | 169 | | | | K0191
(K0610) | Mainstage OK D/O | | | | 174 | | | | K0007
(K0531) | Helium Control Solenoid
Enrg D/O | <i>u</i> | | 1,000 <u>+</u> 110 ms from K0013 | 1,008 | 1,008 | | ^{*}Signal drops out when pressure reaches 425 \pm 25 psig (KOXXX) Actual number from acceptance firing event recorder. TABLE 6-7 (Sheet 6 of 6) ENGINE SEQUENCE | | | | The second secon | | | | |------------------|-------------------------------|------------------|--|----------------------|-------|--------------------------------| | | CONTROL EVENT |) | CONTINGENT EVENTS | NOMINAL TIME FROM | ACT | ACTUAL TIME (ms) | | MEAS
NO. | EVENT AND COMMENT | MEAS
NO. | EVENT AND COMMENT | SPECIFIED REFERENCE | FROM | FROM
SPECIFIED
REFERENCE | | SS-22
(K0507) | PU Activate Switch D/0 | | | N/A | 3,137 | | | | - | K0125
(G0510) | Oxidizer Turbine
Bypass Valve Closed
D/O | | 220 | | | | | K0124
(G0510) | Oxidizer Turbine
Bypass Valve Open
P/U | 10,000 ms from K0005 | 847 | 843 | | K0126
(K0558) | LOX Bleed Valve
Closed D/O | | | 30,000 ms from K0005 | 7,210 | 7,206 | | K0127
(K0557) | LH2 Bleed Valve Closed
D/O | | | 30,000 ms from K0005 | 9,111 | 9,107 | (KOXXX) Actual number from acceptance firing event recorder. Figure 6-1. J-2 Engine System and Instrumentation Figure 6-2. Thrust Chamber Chilldown Figure 6-3. LH2 Pump Performance During Engine Start Figure 6-4. Engine Start and Control Sphere Performance | | TEMPERATURE (°R) | | | PRESSURE (PSIA) | | | MASS (LBM) | | | |--|-----------------------------|-----|-------------|------------------|-------------|-----------------------|----------------------|----------------------|------| | PARAMETER | 209 | 208 | 207 | 209 | 208 | 207 | 209 | 208 | 207 | | ENGINE START REQUIREMENT ENGINE START COMMAND | SEE START REGION | | | SEE START REGION | | | 3,53 | 3.83 | 3.32 | | AFTER START SPHERE BLOWDOWN ENGINE CUTOFF TOTAL GH2 USAGE DURING START | 194 168 200
281: 225 205 | | 152
330# |
160
1362 | 169
1300 | 0.64
0.92*
2.89 | 0.72
4.48
3.11 | 0.66
3.85
2.66 | | ^{*} FOR S-IVB-209 ACCEPTANCE THE START SPHERE WAS NOT RECHARGED. SEE PARAGRAPH 6.1.4. Figure 6-5. Engine Start Sphere Performance Figure 6-6. J-2 Engine Chamber Pressure Figure 6-7. J-2 Engine Injector Supply Conditions Figure 6-8. LOX and LH2 Flowrate Figure 6-9. J-2 Engine Pump Operating Characteristics Figure 6-10. Turbine Inlet Operating Conditions Figure 6-11. Gas Generator Performance Figure 6-12. Engine Steady-State Performance (Sheet 1 of 3) Figure 6-12. Engine Steady-State Performance (Sheet 2 of 3) Figure 6-12. Engine Steady-State Performance (Sheet 3 of 3) Figure 6-13. Specific Impulse versus Mixture Ratio Figure 6-14. Total Accumulated Impulse After Engine Start Command Figure 6-15. Engine Start Transient Characteristics Figure 6-16. Thrust Variations (Sheet 1 of 3) Figure 6-16. Thrust Variations (Sheet 2 of 3) Figure 6-16. Thrust Variations (Sheet 3 of 3) Figure 6-17. Total Accumulated Impulse After Engine Cutoff Command Figure 6-18. Engine Cutoff Transient Characteristics (Sheet 1 of 2) Figure 6-18. Engine Cutoff Transient Characteristics (Sheet 2 of 2) Figure 6-19. Engine Start Sequence Figure 6-20. Engine Vibration # 7. OXIDIZER SYSTEM Due to a malfunction of the LOX tank pressurization control module, LOX NPSH fell below the minimum acceptable level for a 20-sec period shortly after Engine Start Command; however, there were no detrimental effects to the J-2 engine or to the remainder of the acceptance firing. With the exception of the above anomaly, the oxidizer system performance was acceptable. # 7.1 Pressurization Control The LOX tank pressurization system (figure 7-1) provided ullage pressure in the tank sufficient to satisfactorily complete the acceptance firing; however, a severe, though temporary, anomaly within the LOX tank pressurization control module caused the ullage pressure to drop to a low of 29.1 psia at ESC +27 sec. As a result, the engine pump NPSH dropped to 18.1 psi, 2.8 psi below the required minimum. The low ullage pressure also caused a common bulkhead negative differential pressure (refer to paragraph 15.4). In spite of these conditions, no detrimental effects were noted, the ullage pressure recovered, and the firing continued to a normal cutoff. #### 7.1.1 Prepressurization The LOX tank prepressurization and pressure makeup cycles before simulated liftoff were accomplished from ground support equipment console "B" cold helium supply (figure 7-2). Helium purges of the vent valve and the LOX tank ullage pressure sensing line increased the ullage pressure to the vent relief setting twice, just prior to simulated liftoff and immediately after simulated liftoff. In order to protect the reusable ignition detection probe, the LOX tank was vented to 38.3 psia prior to Engine Start Command. Table 7-1 compares significant LOX tank prepressurization data from two previous acceptance firings. ## 7.1.2 Pressurization The LOX tank pressurization system performance in maintaining the ullage pressure at the proper level was inadequate. During the start transient, the ullage pressure dropped to 29.1 psia (as compared to the predicted minimum of 34.8 psia) before recovering to a value within the normal band by ESC +60 sec; however, pressure after this time was as anticipated. As predicted, an overcontrol cycle was required five times to maintain the ullage pressure within the range of 39.6 to 37.6 psia during the firing. Except for the period during the noted malfunction, the LOX tank pressurization system operation was nominal (figure 7-3) and compared well with that of the S-IVB-207 and 208 stage systems. Table 7-2 compares the S-IVB-209 stage pressurization system data with that from previous acceptance firings. The cause of the dip in ullage pressure was an anomaly in the LOX tank pressurization control module during the initial chilldown of the system. The plenum discharge pressure (D0105) dropped to a low of 218 psia during this period as opposed to a nominal minimum of 300 psia. (Figure 7-4 presents a comparison of S-IVB-209 data with that from five previous stages for the first 100 sec of firing.) The pressure then recovered but remained below specification until the final overcontrol cycle started. At this time the regulator outlet pressure increased and stayed within the specification range until near cutoff, when the supply pressure caused it to fall below specification. The plenum discharge pressure has remained below specification levels through most of previous acceptance firings. This occurs because the regulator, which is flow-sensitive, is calibrated at a flowrate lower than that used during the acceptance firing. This will be corrected on subsequent stages. The data indicated that the temporary drop in plenum pressure might have been caused by one of the following problems: - a. Leakage between the regulator and the plenum caused by differential contraction rates during chilldown. - b. Failure of the regulator to regulate properly during system chilldown. - c. Internal blockage in the system between the regulator and the plenum. The possibility of leakage was discounted after initial calculation showed that a leakage rate in the order of 600 scfm would have been required. This rate is entirely too high to be reasonable. After the firing, the module was removed from the stage, inspected, and tested. The testing indicated that the regulator would function normally when thoroughly chilled but tended to regulate to low plenum pressures while being chilled. The low plenum pressure during chilldown is presumed to be due to choking in the regulator metering system, causing the regulator poppet to respond to metering system anomalies rather than the pressures downstream of the poppet; however, even though there is a strong indication that this explains the low plenum pressure, this is not the total explanation of the problem. When the module was inspected, the No. 1 shutoff valve, the shutoff pilot seat, the module outlet filter, and some parts in the regulator dome were rusted, indicating that moisture had been present in the system. Also, three of the separators in the regulator were fractured. The exact point in time when the moisture was introduced into the regulator has not been determined. If the moisture had been present during the acceptance firing, there could have been an added pressure drop due to moisture freezing on the outlet filter. At the present time the anomaly of the pressurization module seems to have a double cause: the regulator thermal choking and the moisture collecting on the outlet filter. Additional testing is presently being conducted to substantiate these presumptions. ### 7.2 Cold Helium Supply At Engine Start Command, the six cold helium spheres contained a total of 246 lbm of helium at 3,043 psia and 42.25 deg R. The conditions of the cold helium spheres at significant times are presented in table 7-2. The temperature and pressure profiles were normal and are shown in figure 7-5. ## 7.3 J-2 Heat Exchanger The J-2 heat exchanger functioned satisfactorily and compared well with previous tests (figure 7-6). A comparison of significant S-IVB-209 stage heat exchanger data with that from two previous acceptance firings is presented in table 7-3. ## 7.4 LOX Pump Chilldown The LOX pump chilldown system performed adequately. At Engine Start Command, the NPSH at the LOX pump inlet was above the minimum required at that time. The chilldown system data and the results of the performance calculations are presented in figures 7-7 and 7-8 and compared with previous test data in table 7-4. The chilldown pump was started 598 sec prior to simulated liftoff in an attempt to simulate the KSC launch countdown sequence. Subsequent to the establishment of this sequence, it was determined that, at KSC, chilldown starts at approximately liftoff minus 300 sec. This sequence will be reflected in future STC testing. The chilldown shutoff valve was left open until T_0 +602.8 sec (approximately ECC -10 sec), also in simulation of the flight sequence. The heat input rates for the three sections of the chilldown system were computed using flowrate and temperature data. The three sections are defined as follows: - a. Tank to turbopump inlet - b. Pump inlet to bleed valve - c. Bleed valve to tank inlet. These heat input rates decreased rapidly as heat was removed from the hardware during the first minute of chilldown, then remained relatively constant during the subsequent chilldown process (figure 7-8). During steady-state pressurized chilldown, the heat input rates were within the range of those obtained for previous acceptance firings (table 7-4). The chilldown pump flowrate and differential pressure at 46.5 gpm and 11.5 psid were both somewhat higher than they were on previous firings. This higher flowrate and consequently increased differential pressure is attributed to a change in LOX chilldown pump design. This stage is the first to utilize a pump with an improved inducer. The high level of differential pressure measured by DO219, however, is not supported by the remainder of the system data; it appears to be approximately 20 percent high. This discrepancy has been noted during previous firings; however, no definite explanation is presently available. The subject is under investigation. # 7.5 Engine LOX Supply The LOX supply system (figure 7-9) delivered the necessary quantity of LOX to the engine pump inlet throughout the engine firing and maintained the pressure and temperature conditions within the specified range except for a 20-sec period after engine start. During this time, NPSH decreased to 18.1 psi, as opposed to the required 20.9 psi; however, no detrimental effects were attributed to this occurrence. The cause of the problem originated in the LOX tank pressurization system and is discussed in paragraph 7.1.2. The data and calculated performance are presented
in figure 7-10. Table 7-5 compares S-IVB-209 stage data and calculated performance with that from two previous acceptance firings. The LOX pump inlet pressure and temperature were plotted in the engine LOX pump operating region (figure 7-11) and showed that the engine LOX pump inlet conditions were met satisfactorily during most of the engine operation. In figure 7-12, the pump inlet temperature is plotted against the mass remaining in the LOX tank during engine operation and is compared to the S-IVB-208 and 503N acceptance firing data. These data have been biased to an identical initial condition to correct for instrumentation error, different heating rates during prepressurization, and other test-to-test variations. It is apparent that the heat transfer to the LOX was very similar to that noted on previous stages. ## 7.6 LOX Tank Vent and Relief Valve Performance The LOX tank vent and relief valve was tested during CD 614084. The valves relieved at 43.6, 43.5, and 43.4 psia; however, when the tank was allowed to self-pressurize, ullage pressure stabilized at 42.0 psia and, after several minutes at this level, the vent valve talkback was received. In addition, the valve relieved twice at 42.1 psia, following prepressurization. The different pressure ranges are attributable to the rate of ullage pressure rise; auxiliary ground pressurization with a very rapid pressure rise rate is used during the vent and relief valve test versus the slow rise caused by self-pressurization. TABLE 7-1 LOX TANK PREPRESSURIZATION DATA | PARAMETEK | S-IVB-207 | S-IVB-208 | S-IVB-209 | |---|--------------------|--------------------|--------------------| | Prepressurization duration (sec) | 16 | 19 | 17.1 | | Number of makeup cycles | 1 | 2 | 2 | | Prepressurization flowrate (lbm/sec) | 0.22
to
0.32 | 0.22
to
0.30 | 0.22
to
0.29 | | Helium added to LOX tank | | | 7.44 | | During main prepressurization (1bm) | 4.00 | 3.87 | 3.4 | | During makeup cycles (1bm) | 0.66 | 0.65 | 0.63 | | Ullage pressure | | | | | At prepressurization initiation (psia) | 15.2 | 15.0 | 15.0 | | At prepressurization termination (psia) | 40.5 | 39.2 | 39.9 | | At Engine Start Command (psia) | 41.9 | 41.4 | 38.3 | | Events (sec from ESC) | | | | | Prepressurization initiation | -311 | -315 | -312.5 | | Prepressurization termination | -295 | -296 | -295.4 | TABLE 7-2 (Sheet 1 of 2) LOX TANK PRESSURIZATION DATA | PARAMETER | S-IVB-207 | S-IVB-208 | S-IVB-209 | |--|----------------------|--------------------|--------------------| | Number of secondary flow intervals | 7 | 6 | 5 | | Control pressure switch range (psia) | 37.43
to
39.45 | 37.5
to
39.5 | 37.6
to
39.6 | | Ullage pressure | | | | | At Engine Start Command (psia) | 41.9 | 41.4 | 38.3 | | Minumum during start transient (psia) | 36.3 | 34.25 | 29.1 | | LOX tank pressurization total flowrate | | | | | During overcontrol (1bm/sec) | 0.35
to
0.47 | 0.36
to
0.44 | 0.39
to
0.47 | | Predicted (1bm/sec) | 0.42
to
0.46 | 0.39
to
0.47 | 0.41
to
0.45 | | During undercontrol (1bm/sec) | 0.265
to
0.34 | 0.26
to
0.32 | 0.28
to
0.37 | | Predicted (1bm/sec) | 0.29
to
0.33 | 0.27
to
0.32 | 0.29
to
0.32 | | Cold helium sphere conditions | | | | | Mass in spheres at engine start (1bm) | 254 | 254 | 246.4 | | Pressure at engine start (psia) | 2,990 | 3,046 | 3,043 | | Average temperature at engine start (deg R) | 39.7 | 40.0 | 42.2 | | Mass in spheres at engine cutoff (1bm) | 97 | 100 | 82.5 | | Helium consumed during firing as calculated from sphere conditions (1bm) | 157 | 154 | 163.9 | # TABLE 7-2 (Sheet 2 of 2) LOX TANK PRESSURIZATION DATA | PARAMETER | S-IVB-207 | S-IVB-208 | S-IVB-209 | |--|-----------|-----------|-----------| | Cold helium sphere conditions (Continued) | | | | | Helium consumption calculated by integration of flowrate (1bm) | 155 | 142 | 154 | | Pressure at engine cutoff (psia) | 640 | 648 | 550 | | Average temperature at engine cutoff (deg R) | 44.8 | 42.2 | 43.0 | | Estimated temperature loss in 10 feet of insulated line | | | | | During overcontrol (deg R) | 7 | 11 | 9 | | During undercontrol (deg R) | 17 | 28 | 23 | | Maximum LOX tank vent inlet temperature (deg R) | 496 | 506 | 500 | TABLE 7-3 J-2 HEAT EXCHANGER DATA | | | r | | |--|---------------------------|------------------|------------------| | PARAMETER | S-IVB-207 | S-IVB-208 | S-IVB-209 | | Flowrate through heat exchanger | | | / | | During overcontrol (1bm/sec) | 0.215 | 0.20 | 0.20
to | | | | | 0.215 | | During undercontrol (1bm/sec) | 0.085 | 0.080 | 0.085 | | Heat exchanger inlet temperature | | | | | During overcontrol (deg R) | 60 | 60 | 55 | | During undercontrol (deg R) | 73 | 70 | 68 | | Heat exchanger outlet temperature* | | | | | During overcontrol (deg R) | 957 | 980 | 959 | | During undercontrol (deg R) | 1,002 | 1,000 | 1,006 | | Heat exchanger outlet pressure | | | - | | During overcontrol (psia) | 335
to | 315
to | 325
to | | • | 360 | 345 | 350 | | During undercontrol (psia) | 385
to
407 | 380
to
400 | 355
to
410 | | Heat exchanger outlet temperature at Engine Cutoff Command (deg R) | 902 | 906 | 898 | | Average LOX vent inlet pressure | Manufacture of the second | • | | | During overcontrol (psia) | 72 | 69 | 70 | | During undercontrol (psia) | 51 | 51 | 50 | ^{*}Estimated from measurement C0009 and uninsulated line temperature loss. TABLE 7-4 (Sheet 1 of 2) LOX CHILLDOWN SYSTEM PERFORMANCE | PARAMETER | S-IVB207 | S-IVB-208 | S-IVB-209 | |---|----------|-----------|-----------| | NPSH (psi) | | - | | | At Engine Start Command | 33.2 | 32.0 | 29.7 | | Minimum required at engine start (psi) | 16.5 | 16.5 | 16.5 | | Average flow coefficient (sec ² /in ² ft ³) | 15.3 | 15.6 | 15.0 | | Pump inlet conditions at engine start | | | | | Pressure (psia) | 50.0 | 49.5 | 46.3 | | Temperature (deg R) | 164.6 | 165.6 | 164.4 | | Heat absorption rate (Btu/hr) | | | | | Section 1 (tank to turbopump inlet) | 2,000 | 4,000 | 3,000 | | Section 2 (pump inlet to bleed valve) | 14,200 | 14,000 | 17,100 | | Section 3 (bleed valve to tank inlet) | 2,800 | 2,000 | 4,300 | | Total | 19,000 | 20,000 | 24,400 | | Chilldown flowrate (gpm) | | ÷ | | | Unpressurized | 36.7 | 37.7 | 40.6 | | Pressurized | 41.0 | 43.0 | 46.5 | | Pressure drop (psi) | | | | | Unpressurized | 8.7 | 8.0 | 9.0 | | Pressurized | 10.0 | 10.0 | 11.5 | | Events (sec from T ₀) | | | | | Chilldown start | -302 | -602 | -598.2 | | Prevalve Open Command | 146.88 | 146.39 | 147.56 | TABLE 7-4 (Sheet 2 of 2) LOX CHILLDOWN SYSTEM PERFORMANCE | PARAMETER | S-IVB-207 | S-IVB-208 | S-IVB-209 | |---|-----------|-----------|-----------| | Events (sec from T ₀) (Continued) | | . : | | | Prevalve closed signal dropout | 147.50 | 147.16 | 149.03 | | Prevalve open signal pickup | 149.08 | 148.69 | 150.57 | | Delay between prevalve open signal and pickup of signal | 2.26 | 2.30 | 3.01 | | Chilldown shutoff valve closed | 150 | 566.57 | 602.8 | | Prepressurization | -161 | -165 | -160.7 | | Engine Start Command | 150.86 | 150.27 | 151.847 | | Engine Cutoff Command | 598.94 | 576.87 | 610.682 | TABLE 7-5 LOX PUMP INLET CONDITIONS | PARAMETER | S-IVB-207 | S-TVB-208 | S-IVB-209 | |---------------------------------------|-----------|-----------|-----------| | Pump inlet conditions at engine start | | | | | Static pressure (psia) | 50.0 | 49.5 | 46.3 | | Temperature (deg R) | 165.2 | 165.6 | 164.4 | | NPSH requirements | | | | | At high EMR (psi) | 21.0 | 20.2 | 20.9 | | After EMR cutback (psi) | 14.9 | 14.25 | 15.8 | | NPSH available | | | | | At Engine Start Command (psi) | 33.2 | 32.0 | 29.7 | | Minimum during start transient (psi) | 26.0 | 22.8 | 18.1 | | Time of occurrence (sec from ESC) | 20 | 21 | 27 | | At Engine Cutoff Command (psi) | 21.8 | 20.7 | 23.7 | | Minimum during firing (psi) | 21.8 | 20.7 | 18.1 | | Time of occurrence (sec from ESC) | ECC | ECC | 27 | | Feed duct during high EMR | | | | | Pressure drop (psi) | 1.4 | 1.8 | 2.3 | | Flowrate (1bm/sec) | 450 | 468 | 457 | | Feed duct after EMR cutback | | | | | Pressure drop (psi) | 0.4 | 1.3 | 1.3 | | Flowrate (1bm/sec) | 368 | 379. | 359 | Figure 7-2. LOX Tank Prepressurization Figure 7-3. LOX Tank Pressurization System Performance Figure 7-4. LOX Pressurization Module Start Transient Pressure Figure 7-5. Cold Helium Supply Figure 7-6. J-2 Heat Exchanger Performance Figure 7-7. LOX Pump Chilldown System Operation Figure 7-8. LOX Pump Chilldown System Performance Figure 7-9. LOX Supply System Figure 7-10. LOX Pump Inlet Conditions Figure 7-11. LOX Pump Inlet Conditions During Firing Figure 7-12. Effect of LOX Mass Level on LOX Pump Inlet Temperature ## 8. FUEL SYSTEM The fuel system performed as designed and supplied LH2 to the engine within the limits defined in the engine specification. ### 8.1 Pressurization Control The LH2 tank pressurization system (figure 8-1) performed adequately and satisfactorily controlled LH2 tank ullage pressure throughout the firing. # 8.1.1 Prepressurization The LH2 tank was satisfactorily prepressurized with helium from ground support equipment console "B." Data are presented in figure 8-2 and compared with S-IVB-207 and S-IVB-208 data in table 8-1. Between the end of prepressurization and Engine Start Command (ESC), the ullage temperature increased because of ambient heat input, causing the ullage pressure increase shown in figure 8-2. ### 8.1.2 Pressurization During engine operation, LH2 tank pressurization was satisfactorily accomplished by the GH2 tapoff system (figure 8-1). The data are
presented in table 8-2 and figure 8-3 and show that all measured parameters were within the normal dispersion range observed in previous tests. Two complete overcontrol cycles were accomplished before step pressurization. The LH2 tank relief valve cracked open at ESC +442.7 sec, during step pressurization, and continued relieving until Engine Cutoff Command (ECC). ### 8.2 LH2 Pump Chilldown The LH2 pump chilldown system performed satisfactorily; the NPSH at Engine Start Command was well above the required level. The chilldown system data and the results of the performance calculations are presented in figures 8-4 and 8-5 and compared with previous test data in table 8-3. Examination of the data during the quiescent period before recirculation was initiated revealed that the liquid in the system was saturated at that time. LH2 chilldown flowrate (F0005), LH2 chilldown pump differential pressure (D0218), LH2 pump inlet pressure (D0536), LH2 pump inlet temperature (C0003), LH2 bleed valve temperature (C0650), and LH2 return line temperature (C0161) were biased based on known conditions at that time. The test utilized the anticipated flight sequence, with chilldown initiated at approximately T_0 -595 sec (paragraph 7.4) and the chilldown shutoff valve open after chilldown termination. The valve was closed at approximately T_0 +602.8 sec. Chilldown system performance was nominal and compared well with that of previous stages, as indicated in table 8-3. System flowrates and temperatures were at the levels anticipated. During unpressurized chilldown, the liquid was subcooled through the system to a point between the engine pump inlet and the bleed valve; the system became entirely subcooled during prepressurization. The high heat leak condition that occurred on the S-IVB-207 and S-IVB-208 stages did not recur. It should be noted that during the post-acceptance firing tests, the LH2 chilldown duct vacuum and the LH2 upper low pressure duct vacuum exceeded 1,000 microns. No detrimental effect was noted in the chilldown system performance; both of these ducts were subsequently replaced. Because of the problems during the S-IVB-207 and S-IVB-208 stage acceptance firings and because available data were inadequate for developing a satisfactory explanation, additional instrumentation was installed on the S-IVB-209 stage and two special chilldown tests were performed. During the prefiring period of CD 614084, the chilldown operation was performed repeatedly while the flowrate of the chilldown fairing helium purge was varied. After the acceptance firing had been completed, CD 614086 was initiated on 23 June. During this test, the environment inside the chilldown fairing was varied between helium and GN2 and controlled within known limits. # 8.3 Engine LH2 Supply The engine LH2 supply system (figure 8-6) satisfactorily supplied LH2 to the engine pump inlet throughout engine operation and maintained the pressure and temperature within a range that provided an NPSH above the minimum requirement. The data and the results of the performance calculations are presented in figure 8-7 and compared with data from two previous acceptance firings in table 8-4. The LH2 pump inlet pressure and temperature were plotted in the engine operating region (figure 8-8) and showed that the LH2 pump inlet conditions were met satisfactorily throughout the firing. Figure 8-9 is a plot of the pump inlet temperature versus the mass remaining in the LH2 tank during burn. It includes data from S-IVB-208 and S-IVB-503N acceptance firings biased to an identical initial condition to correct for instrumentation error, different heating rates during prepressurization, and other test-to-test variations. The data from all three firings agree closely. ## 8.4 LH2 Vent and Relief Valve Performance During the vent and relief valve check during CD 614084, the LH2 vent and relief valve relieved at 38.0, 37.9, and 37.9 psia. During the acceptance firing (CD 614085), the valve feathered open at 37.7 psia. TABLE 8-1 LH2 TANK PREPRESSURIZATION DATA | PARAMETER | S-IVB-207 | S-IVB-208 | S-IVB-209 | |--|-----------|-----------|-----------| | Prepressurization duration (sec) | 71.6 | 77.5 | 49.0 | | Helium mass used during prepressurization (1bm) | 38.72 | 33.76 | 24.6 | | Ullage pressure | | | | | At prepressurization termina-
tion (psia) | 34.1 | 33.4 | 33.5 | | At simulated liftoff (psia) | 34.7 | 33.9 | 34.1 | | At Engine Start Command (psia) | 37.4 | 36.4 | 36.5 | | Rise rate after prepressuri-
zation (psi/min) | 1.04 | 0.99 | 0.84 | | Events (sec from T ₀) | | | | | Prepressurization initiation | -110.7 | -109.6 | -110.7 | | Prepressurization termination | -39.1 | -32.1 | -61.7 | TABLE 8-2 LH2 TANK PRESSURIZATION DATA | | _ | | | |---|-----------|--|-----------| | PARAMETER | S-IVB-207 | S-IVB-208 | S-IVB-209 | | Number of control cycles | 2 | 2 | 2 | | | | | | | Control pressure switch range (psia) | 27.1 | 27.3 | 27.3 | | | 29.3 | to
29.0 | 29.3 | | | 20.3 | 27.0 | 27.5 | | Ullage pressure | | gentette filosofi
werden in de generalier | | | At Engine Start Command (psia) | 37.4 | 36.4 | 36.5 | | At step pressurization (psia) | 28.5 | 28.2 | 28.0 | | At Engine Cutoff Command (psia) | 38.9 | 37.3 | 37.8 | | At relief valve operation (psia) | 38.35 | N/A | 37.7 | | | | | | | GH2 pressurant flowrate | | | <u>.</u> | | Undercontrol (1bm/sec) | 0.36 | 0.40 | 0.36 | | Overcontrol (1bm/sec) | 0.65 | 0.68 | 0.63 | | Step before cutback (1bm/sec) | 1.10 | 1.18 | N/A | | Step after cutback (1bm/sec) | 0.99 | 1.08 | 0.98 | | | | - | | | Total GH2 pressurant mass (1bm) | 281.2 | 285.1 | 280.3 | | | | | | | LH2 boiloff during engine operation (1bm) | 0 | 0 | 0 | | | | * | | | Events (sec from ESC) | • • | * | | | Step pressurization | 301.3 | 300.2 | 300.2 | | Relief valve opening | 408 | N/A | 442.7 | | | | | LJ | N/A = Not applicable TABLE 8-3 (Sheet 1 of 2) LH2 CHILLDOWN SYSTEM PERFORMANCE | PARAMETER | S-IVB-206 | S-IVB-209 | |--|-----------|-----------| | NPSH (psi) | | | | Maximum | 25.5 | 21.9 | | At Engine Start Command | 18.0 | 14.2 | | Minimum required at Engine Start Command | 6.4 | 6.5 | | Average flow coefficient (sec ² /in. ² ft ³) | 18.2 | 17.5 | | Fuel quality (sections 2 and 3unpressurized) | | | | Maximum (1b gas/1b mixture) | 0.033 | 0.045 | | At prepressurization (1b gas/1b mixture) | 0.025 | 0.034 | | Pump inlet conditions at engine start | | | | Static pressure (psia) | 38.5 | 37.3 | | Temperature (deg R) | 38.6 | 39.4 | | Amount of subcooling (deg R) | 4.6 | 3.5 | | Heat absorption rateunpressurized (Btu/hr) | | | | Section 1 (tank to pump inlet) | 21,000 | 20,000 | | Sections 2 (pump inlet to bleed valve) and 3 (bleed valve to tank) | 18,000 | 23,000 | | Total | 39,000 | 43,000 | | Heat absorption ratepressurized (Btu/hr) | | | | Section 1 | 17,500 | 21,000 | | Section 2 | 22,000 | 23,300 | | Section 3 | 21,500 | 15,000 | | Total | 61,000 | 59,300 | | Chilldown flowrate (gpm) | · ** | | | Unpressurized | 108 | 102 | | Pressurized | 143 | 142.6 | TABLE 8-3 (Sheet 2 of 2) LH2 CHILLDOWN SYSTEM PERFORMANCE | PARAMETER | S-IVB-206 | S-IVB-209 | |-----------------------------------|-----------|-----------| | Pressure drop (psi) | | | | Unpressurized | 9.4 | 9.4 | | Pressurized | 8.0 | 8.0 | | Events (sec from T ₀) | | | | Chilldown start | -305.1 | -595.1 | | Prevalve closed | -301.8 | -591.1 | | Prepressurization | -110.1 | -110.7 | | Prevalve Open Command | 147.22 | 147.6 | | Chilldown pump off | 150.2 | 151.6 | | Chilldown shutoff valve closed | 150.34 | 602.8 | | Engine Start Command | 150.77 | 151.847 | TABLE 8-4 LH2 PUMP INLET CONDITIONS | | S-IVB-207 | S-IVB-208 | S-IVB-209 | |---------------------------------------|-----------|-----------|-----------| | Pump inlet conditions at engine start | | | | | Static pressure (psia) | 38.2 | 38.1 | 37.3 | | Temperature (deg R) | 41.6 | 41.4 | 39.4 | | | | | | | NPSH requirements | | | | | At high EMR (psi) | 5.8 | 6.5 | 6.6 | | After EMR cutback (psi) | 5.6 | 5.9 | 6.05 | | | | | | | NPSH available | | | | | At Engine Start Command (psi) | 6.8 | 7.6 | 19.5 | | At Engine Cutoff Command (psi) | 16 | 16 | 15.8 | | Minimum (psi) | 9.5 | 9.5 | 8.25 | | Time of minimum (sec from ESC) | 270 | 215 | 300 | | | | | | | Feed duct at high EMR | | | | | Pressure drop (psi) | 0.5 | , 0.5 | 1.1 | | Flowrate (1bm/sec) | 80.5 | 85.5 | 82.8 | | | | | | | Feed duct after EMR cutback | | | , | | Pressure drop (psi) | 0.3 | 0.5 | 0.9 | | Flowrate (1bm/sec) | 74.2 | 79.4 | 76.1 | Figure 8-1. LH2 Tank Pressurization System Figure 8-2. LH2 Tank Prepressurization System Performance Figure 8-3. LH2 Tank Pressurization System Performance Figure 8-4. LH2 Pump Chilldown Figure 8-5. LH2 Pump Chilldown Characteristics Figure 8-6. LH2 Supply System 8-16 Figure 8-7. LH2 Pump Inlet Conditions Figure 8-8. LH2 Pump Inlet Conditions During Firing Figure 8-9. Effect of LH2 Mass Level on LH2 Pump Inlet Temperature #### 9. PNEUMATIC CONTROL AND PURGE SYSTEM The pneumatic control and purge system (figure 9-1) performed satisfactorily throughout the acceptance firing. The helium supply to the system was adequate for both pneumatic valve control and purging; the regulated pressure was maintained within the acceptable limits and all components functioned normally. Because the pneumatic sphere temperature transducer is not installed on operational stages such as S-IVB-209, mass and temperature data cannot be presented. The data that were obtained are presented in figure 9-2. ## 9.1 Pneumatic Control With the exception of the LOX prevalve, all engine and stage pneumatically controlled valves responded properly throughout the countdown and acceptance firing. The LOX prevalve opening time was 3.01
sec, 0.01 sec longer than the 3 sec SIM-interrupt time used on previous acceptance firings. During CD 614084 the prevalve opening time was observed to be 2.85 sec; therefore, for CD 614085 the SIM-interrupt time was changed to 4 sec. Part of this increase over the normal 2.2 to 2.5 sec opening time is attributed to a new configuration of the actuation control module. The precise causes of the problem, as well as remedial action, are presently under investigation. #### 9.2 Ambient Helium Purges During the acceptance firing, all stage purge functions that utilize stage pneumatics were satisfactorily accomplished. The pneumatic system was isolated from the ground support equipment at T_0 -3 sec, thus discontinuing those purges that were facility supplied. The flowrates of the various purge orifices are listed in table 3-2. The LOX chilldown motor container purge pressure was maintained within the design range throughout the acceptance firing. The engine pump purge regulator pressure was initially thought to be abnormal; however, the cause was determined to be a faulty transducer (D0050). 9-3 Figure 9-2. Pneumatic Control and Purge System Performance #### 10. PROPELLANT UTILIZATION SYSTEM The propellant utilization (PU) system performed as expected during the acceptance firing and all test objectives were satisfactorily accomplished. This was the first S-IVB/IB stage to be acceptance fired with the common propellant load of 38,000 lbm LH2 and 193,273 lbm LOX. This was also the first acceptance firing of the reshaped LH2 mass sensor. The final indicated LOX and LH2 masses loaded were 0.49 percent higher and 0.42 lower, respectively, than the actual masses based on the flow integral analysis. The PU system operated in the closed-loop mode throughout the firing with a reference mixture ratio (RMR) of 4.7:1. PU valve cutback occurred at Engine Start Command (ESC) +233 sec as compared to the predicted cutback time of ESC +265 sec. Based on extrapolation from the conditions at cutoff, depletion would have occurred with 215 lbm of usable LH2 on board as compared to a guaranteed maximum flight residual of 575 lbm. The engine thrust variations were well within the thrust variation limits derived for the CEI specification. No engine performance shifts occurred during RMR control at 4.7:1.0. Use of both reshaped LOX and LH2 sensors significantly reduced sensor-induced thrust variations. The mean thrust slope during the last 70 sec of burn was one 1bf/sec and the thrust variation band was ± 490 1bf. The actual PU valve history exhibited a more gradual slope following cutback than the predicted. This slope deviation, which also occurred in the S-IVB-503N acceptance firing data, is indicative of a gain difference between the actual PU system and the simulation model. The actual PU system gain was approximately 3 db lower than the postfiring simulation. Investigation of test data obtained during checkout of the PU electronics assembly for the S-IVB-209 acceptance firing revealed 1.7 db of the difference. ## 10.1 PU System Calibration The nominal pre-acceptance mass sensor calibration was determined from previous test results. The propellant masses at the upper and lower calibration point were determined from calculated unique tank volume data and predicted propellant densities. The capacitance at the lower point was determined from vendor's sensor calibration data and fast drain data from previous acceptance firings. The LOX sensor capacitance at the upper calibration point was determined from the S-IVB-209 vendor's air capacitance test and immersed LOX sensor data from the S-IVB-207 stage. The LH2 sensor capacitance at the upper calibration point was determined from the S-IVB-503N immersion test and S-IVB-209 vendor's air capacitance. The LOX and LH2 PU mass sensor calibrations are listed in the following table: | PU Mass Sensor | Cap (pf) | Mass (1bm) | Location | |----------------|----------|------------|-------------------------| | LOX | 281.70 | 1,284 | Bottom of Inner Element | | | 413.05 | 196,224 | Top of Inner Element | | LH2 | 970.18 | 214 | Bottom of Inner Element | | | 1,186.24 | 44,777 | Top of Inner Element | ### 10.2 Propellant Loading Propellant loading was accomplished automatically by the loading computer. The following is a tabulation of the desired, indicated, and actual full propellant loads at ESC: . | Propellant Load | LOX (1bm) | LH2 (1bm) | |-------------------------------------|-----------|-----------| | Desired full load (predicted) | 193,273 | 38,000 | | Indicated full load (PU reading) | 193,203 | 38,061 | | Actual full load (flow integral) | 192,260 | 38,222 | | Difference (indicated less desired) | . –70 | 61 | | Difference (actual less desired) | -1,013 | 222 | | Difference (indicated less actual) | 943 | -161 | ## 10.3 Propellant Mass History The flow integral method was used to determine the actual propellant full load and mass history. The results of the flow integral method of mass determination will be used to recalibrate the PU system for flight. The flow integral method consists of determining the mass flowrates of LOX and LH2 and integrating as a function of time to obtain total consumed mass during firing. Flow integral mass values are based on the analysis of engine flowmeter data, thrust chamber pressure and temperature differentials, engine influence equations, and engine tag values. The initial full load mass is determined by adding the propellant residuals at engine cutoff, the fuel pressurant added to the ullage and the propellant lost to boiloff, to the total mass consumed. Residual mass values at engine cutoff are based on the best estimate method (paragraph 10.4). The following tabulation presents the propellant mass history for salient times during the acceptance firing: | TIME | FLOW INTEGRAL MASS (1bm) | | CORRECTED PU SYSTEM(1) MASS (1bm) | | DEVIATION(2) (1bm) | | |--|--------------------------|--------|-----------------------------------|--------|--------------------|-----| | | LOX | LH2 | LOX | LH2 | LOX | LH2 | | Simulated Liftoff (T ₀)
and Engine Start
Command | 192,260 | 38,222 | 193,188 | 38,419 | 928 | 197 | | PU Valve Cutback
ESC +233 sec | 87,262 | 19,154 | 87,813 | 19,131 | 489 | -23 | | Engine Cutoff Command ESC +458.841 sec | 2,311 | 1,366 | 2,324 | 1,391 | 13 | 25 | NOTES: (1) Total mass in tank as determined by the PU system corrected for nonlinearities. (2) Deviation of the corrected PU system mass from the flow integral mass. #### 10.4 Propellant Residuals Propellant residuals were computed at Engine Cutoff Command using both the PU mass sensor and the residual point level sensors. Two level sensors (L0005 and L0004) in the LOX tank and one level sensor (L0002) in the LH2 tank were activated during the firing and were used for the residual computations. The residuals derived from the point level sensors were generated using engine consumption data to extrapolate from level sensor activation to engine cutoff. A statistical average residual was computed for the point level sensors for each propellant tank. The final residual masses at engine cutoff are the best estimate residuals generated by weighted averaging the level sensor and PU mass residuals. The following table presents the propellant residuals determined by the PU mass sensor and the residual point level sensors at engine cutoff: | | | LOX (1bm) LH2 (1bm) | | bm) | | | |------------------------------------|-----------------------|---------------------|--|-----------------------|-------------|--| | LEVEL SENSOR (ACTIVATION TIME) | PU
SYSTEM
VALUE | LEVEL
SENS OR | LEVEL SENSOR
RESIDUAL
(EXTRAPOLATED
TO ECC) | PU SYSTEM
VALUE | | LEVEL SENSOR
RESIDUAL
(EXTRAPOLATED
TO ECC) | | L0005
(ESC +437.58 sec) | 9,930 | 9,864 | 2,249 | | - | | | L0004*
(ESC +459.50 sec) | 2,220 | 2,199 | 2,323 | | | | | L0002
(ESC +446.42 sec) | · | | | 2,253 | 2,308 | 1,350 | | Engine Cutoff
(ESC +458.84 sec) | 2,324
<u>+</u> 320 | | 2,305**
<u>+</u> 226 | -1,391
<u>+</u> 75 | | 1,350**
<u>+</u> 59 | | Best Estimate
Residuals*** | 2,311 <u>+</u> 185 | | | 1,366 ± | <u>+</u> 46 | | ^{*} Level sensor L0004 activated immediately after engine cutoff. Residual for this sensor was computed by adding the engine propellant consumption during the cutoff transient to the level sensor computed mass. # 10.5 PU System Response The tank-to-sensor mismatch for the LOX and LH2 mass sensor normalized to the sensor end points are presented in figures 10-1 and 10-2. Mismatch values are presented including and excluding manufacturing nonlinearities for comparison. The maximum LOX mass sensor error was 475 lbm at ^{**} Statistical average of level sensor residuals. ^{***} Statistically weighted average of level sensor and PU system residuals. 52,000 1bm total LOX load or approximately 0.25 percent error at the 27 percent level of the tank. The maximum LH2 mass sensor error was +80 1bm at the 14,000 1bm level and -80 1bm at the 27,000 1bm level of total LH2 load or approximately 0.19 percent error at the 32 and 63 percent levels of the tank, respectively. PU system valve cutback occurred at ESC +233 sec, 32 sec earlier than the predicted cutback time of ESC +265 sec (figure 10-3). The PU valve position trace exhibited a more gradual slope following cutback than predicted and reached a steady-state position with a mean value approximately 2.5 deg lower than predicted. The difference between the actual and predicted PU valve response following cutback was caused mainly by a PU system calibration deviation and by PU system gain deviation. The following table summarizes the deviations between the actual and predicted PU valve position histories and their sources. | Description | Cutback Time
Deviation (sec) |
Valve Position
Shift (deg) | |--|---------------------------------|-------------------------------| | Loading computer deviations | -5.5 | 0 | | Mass/capacitance calibration deviations | -14.5 | -3.3 | | Difference between predicted and actual tank-to-sensor mismatch nonlinearities | +3.0 | -1.7 | | PU system gain deviation -3 db | -10 | +1.0 | | Total | -27.0 | -4.0 | Considering the above factors, the predicted cutback time would decrease by 27 sec and the mean level of valve position after the cutback transient would be decreased by 4.0 deg. This provides satisfactory agreement between the actual valve response and the postfiring reconstruction as shown in figure 10-4. ### 10.5.1 Loading Computer Deviations Loading computer deviations are the difference between the PU system indicated loads at ESC and the desired PU system indicated loads at ESC. The loading deviations were -70 lbm LOX (-0.036 percent) and +61 lbm LH2 (0.016 percent). The combined effect of these loading computer deviations decreased cutback time by 5.5 sec. The mean level of the valve position after cutback is not affected by these loading computer deviations. # 10.5.2 Mass/Capacitance Calibration Deviations Calibration deviations at ESC were +0.490 percent LOX and -0.421 percent LH2 thus causing the initial LOX mass to be under-loaded and the initial LH2 mass to be over-loaded by the above percentages. Calibration deviations at ECC were -0.078 percent LOX and -0.097 percent LH2. The slope deviations between ESC and ECC were +0.568 percent LOX and -0.324 percent LH2. The desired reference mixture ratio (RMR) for the S-IVB-209 acceptance firing was 4.7:1.0. The bridge-gain-ratio (BGR) was therefore calibrated at 4.7:1.0. Since PU sensor calibration deviations also affect the BGR, the actual ratio was 4.65:1.0. The calibration deviations decreased cutback time by 14.5 sec and shifted the mean value of valve position by -3.3 deg. The total loading deviations including calibration and loading computer deviations were -0.53 percent LOX and -0.581 percent LH2. ## 10.5.3 Difference Between Predicted and Actual Tank-to-Sensor Mismatch The effect of the differences between the average of previous acceptance firing flow integral tank-to-sensor mismatch results used for the S-IVB-209 stage prediction and the actual flow integral tank-to-sensor mismatch increased cutback time by 3 sec and shifted the mean valve position by 1.7 deg. Figures 10-1 and 10-2 present the predicted and actual LOX and LH2 mismatch curves normalized to the sensor extremities. Actual mismatch values are plotted including and excluding sensor manufacturing nonlinearities. Two predictions are provided, one is for the measured tank-to-sensor mismatch based on internal tank measurements including manufacturing nonlinearities and the other is an average of previous test data excluding manufacturing nonlinearities. The actual mismatch curves are based on the combined flow integral computer program. #### 10.5.4 PU System Gain Difference The postfiring reconstruction of the PU valve history was obtained from actual acceptance firing data and is compared to the actual valve profile in figure 10-3. This resulted in a reasonably close comparison between actual and reconstructed data; however, the actual cutback occurred 15 sec earlier, the PU valve cutback response was slower, and the mean valve position was shifted -2.0 deg. The lag between valve cutback and thrust cutback was also larger then predicted (22 sec vs 16 sec). This time lag was caused by the increased time experienced for the PU valve to travel through the nonlinearity gain phase (+32 to +15 deg). During cutback, thrust cutback is normally observed at a valve position of approximately +15 deg. The above factors indicate that the S-IVB-209 stage PU system gain was lower than the PU system simulated gain. The PU system simulation gain reduction required to reconstruct the actual valve cutback transient was 3 db. A reconstruction with the gain reduction is compared to the actual in figure 10-4. This gain difference accounts for the decreased slope of the valve cutback profile, the increased lag between valve and thrust cutback, 10 sec of the early cutback, and a mean valve position shift of +1.0 deg. Investigation of test data obtained during checkout of the PU electronics assembly for the S-IVB-209 acceptance firing has isolated 1.7 db of the difference. Other possible sources of gain reduction are presently being investigated and the flight PU model for S-IVB-209 will reflect the results of this study. #### 10.5.5 PU Efficiency The closed-loop PU efficiency is determined by expressing the usable residual propellant at depletion cutoff as a percentage of the total propellant load. LOX depletion cutoff would have occurred 5.148 sec after the actual ECC. Total stage propellant consumption rates at ECC were 353.89 lbm/sec for LOX and 74.966 lbm/sec for LH2. Extrapolating these flowrates to the theoretical depletion cutoff results in a usable LH2 residual of 215 lbm and a PU efficiency of 99.907. ### 10.5.6 Thrust Variations The thrust variations after cutback were reduced due to the reshaping of the LH2 propellant sensor. This was the first test of the reshaped LH2 propellant sensor combined with the previously acceptance fired reshaped LOX sensor. The complete thrust profile is presented in figure 6-12 and figure 6-16 shows expanded thrust plots of the three significant phases of flight defined for the Contract End Item (CEI) Specification. A tabulation of the actual thrust variations compared to the CEI Specification limits for flight are presented in table 6-6. The thrust variations after cutback were within the CEI thrust limits recently established for the S-IVB-209 CEI Specification. The thrust cutback transient was slower than predicted due to the lower PU system gain (paragraph 10.5.4). The mean slope during the last 70 sec of burn was 1 lbf/sec and the maximum thrust variations about the mean slope was ± 490 lbf. The maximum rate during this period was 87 lbf/sec. There was a thrust tailup of 1,000 lbf during the last 15 sec of burn corresponding to a PU valve tailup of 1.5 deg. The S-IVB-209 stage employing the reshaped LH2 mass sensor exhibited a significant reduction in thrust tailup from the values experienced on previous stages. Figure 10-1. LOX Tank-to-Sensor Mismatch Normalized to Sensor End Points Figure 10-2. LH2 Tank-to-Sensor Mismatch Normalized to Sensor End Points Figure 10-3. PU Valve Position PU Valve Position Reconstruction with PU System Gain Reduction Figure 10-4. ### 11. DATA ACQUISITION SYSTEM The data acquisition system performed as designed by demonstrating the competency of acquiring stage information, conditioning the data signals, translating these signals into proper telemetry format, and transmitting the telemetry information to a ground station. The measurements which comprise this system are specified in Douglas Drawing No. 1B43562S, Instrumentation Program and Components List (IP&CL). A measurement summary is presented in the following table: | Measurement efficiency | 98.86% | |---------------------------------------|--------| | Total number of measurements designed | 232 | | Total number of measurements deleted | 57 | | Total number of active measurements | 157 | | Measurement failures | 2 | | Total successful measurements | 173 | The data acquisition system satisfactorily accomplished its acceptance firing criterion as specified by the S-IVB-209 Stage Acceptance Firing Test Plan (DAC 47459A, as amended). The system performed as expected; no system malfunction was observed and the system was free of radio frequency interference and was electromagnetically compatible with other stage systems. # 11.1 Instrumentation System Performance The instrumentation system performance was excellent during the acceptance firing with the exception of two (2) pressure measurement discrepancies. The system performance is tabulated in table 11-1; status of the inactive measurements is shown in table 11-2. Two measurements failed to exhibit valid data (table 11-3): D0050 - Engine Pump Purge Regulator Pressure data were invalid at T_0 +604 sec and at T_0 +612 sec; D0054 - Fuel Tank Inlet Pressure was known to have a bad transducer before the firing. No replacement was made. Measurements D0183 and D0184, LH2 Tank Non-Prop Vent 1 and 2, are known RFI susceptible parameters and gave trend data only. An evaluation of acceptance firing data revealed that M0069, T/M Aft 5 Volt reference exhibited approximately 2 to 4 percent interference amplitude during childown inverter operation. The interference amplitude is not existent on this measurement during the time the 5 volt references will be used for inflight calibrations. ## 11.2 Telemetry System Performance The telemetry system performance was good. There was no loss of system synchronization and good data were received from all channels. DDAS hardware (600 kc) to DDAS open-loop (RF) comparison did not reveal any data discrepancies (table 11-4). Inflight T/M calibration was observed at T_0 -3,569, T_0 +92, and T_0 +1,298 sec. The T/M calibration during the operation of the chilldown inverters at T_0 +31 sec indicated data point dispersions of ± 10 bits with periodic dropouts of 16 bits; however, the T/M calibration, observed when the chilldown inverters were off at T_0 +1,298 sec, showed maximum data point dispersions of only ± 5 bits, which is well within the required tolerance. # 11.3 RF System Performance No difficulties were encountered in the performance of the RF system. The RF power output after correcting for signal conditioning anomaly was 19.5 W. The correction is to compensate for the 115 ohm series resistor on the output of the voltage generator which is used to calibrate the low gain amplifier following the power detector. The VSWR was calculated
to be 1.43:1. RF system performance data are presented in the following table: | RF Power Amplifier Output | | 19.5 | W | |-------------------------------------|---|--------|----| | (minimum acceptable is 12 W) | | | | | Deviation | | 32 | kc | | Ground Station Signal Strength (UV) | • | 10 | k | | Reflected Power | • | 0.6 | W | | VSWR (maximum acceptable is 1.8:1) | | 1.43:1 | | ## 11.4 Electromagnetic Compatibility The data acquisition system did not interfere with other stage systems in the areas of electromagnetic compatibility; however, the strain gage pressure transducer for measurements D0183-409 and D0184-409 exhibited RFI susceptibility giving trend data only and measurement M0069-404 showed noise during chilldown inverter operation. This interference will not exist during the time the 5 V reference will be used for inflight calibrations. ### 11.5 Emergency Detection System Measurements The LH2 and LOX tank ullage emergency detection system (EDS) pressure measurements performed satisfactorily. The variation between the LOX EDS measurements, which is within instrumentation tolerance, was introduced in the data reduction process. ### 11.6 Hardwire Data Acquisition System Performance The ground instrumentation system (GIS) provides a backup and data comparison for certain stage telemetry system parameters in addition to recording measurements from the ground support and facility equipment. The GIS also provides strip charts for redline and cutoff parameter monitoring. The GIS performance during the acceptance firing was satisfactory. The following table presents the type of recording equipment and the number of channels used during the acceptance firing. | Ground Recorder | Channels Assigned | |---------------------------------|-------------------| | Beckman 210 Digital Data System | 152 | | Constant Bandwidth FM | 67 | | Wideband FM | . . | | Strip Charts | 37 | | Total | 263 | Table 11-5 presents a list of the various types of measurement data recorded and the performance of the system. # 11.6.1 Hardwire Measurement Discrepancies There were three measurement failures, yielding an overall hardwire measurement efficiency of 98.25 percent. The following measurements were classified as failures: | Measurement
No. | Parameter | Remarks | |--------------------|---------------------------------------|--| | D0516 | Press LH2 Pump Discharge
Press | Ambient shifted. Transducer was replaced. | | D0521 | Press LOX Pump Primary
Seal Cavity | 5 to 7 percent ambient high; pin in signal conditioning unit pushed out. Connection was repaired postfire. | | F0507 | Flow Eng LH2 AC Output | Off scale high. Static test uncovered no prob-
lems - dual element pick-
up. F-2 - T/M measurement was OK. | TABLE 11-1 INSTRUMENTATION SYSTEM PERFORMANCE SUMMARY | FUNCTION | NUMBER
ASSIGNED
PER
IP&CL | DELETED | INACTIVE | ACTIVE | FAILED | |----------------------|------------------------------------|---------|----------|--------|--------| | Temperature | 45 | 11 | 3 | 31 | 0 | | Pressure | 58 | . 22 | 2 | 34 | 0 | | Flow | 4 | 0 | 0 | 4 | 0 | | Position | 8 | 0 | 0 | 8 | 0 | | Events | 68 | 5 . | 9 | 54 | 2 | | Liquid Level | 5 | 1 | 0 | 4 | 0 | | Volt, Current, Freq. | 29 | 0 | 0 | 29 | 0 | | Miscellaneous . | 13 | 4 | 0 | 9 | 0 | | Speed | 2 | . 0 | 0 | 2 | 0 | | Totals | 232 | 43 | 14 | 175 | 2 | TABLE 11-2 (Sheet 1 of 3) INACTIVE MEASUREMENTS | MEASUREMENT
NO. | PARAMETER | REMARKS | |--------------------|--------------------------------------|--| | C0007-401 | Temp - Engine Control Helium | Open - Hardwire reqm't - T/M disconnected | | C0050-401 | Temp - Hydr Pump Inlet Oil | Open - Hardwire reqm't - T/M disconnected | | C0102-411 | Temp - Fwd Battery 1 | *Simulated - Primary battery not installed | | C0103-411 | Temp - Fwd Battery 2 | *Simulated - Primary battery not installed | | C0104-404 | Temp - Aft Battery 1 | *Simulated - Primary battery not installed | | C0105-404 | Temp - Aft Battery 2 | *Simulated - Primary battery not installed | | C0166-414 | Temp - He Sphere Gas, Mod 1 (APS) | Simulated - APS not installed | | C0167-415 | Temp - He Sphere Gas, Mod 2 (APS) | Simulated - APS not installed | | C0168-414 | Temp - Oxid Tank Outlet, Mod 1 (APS) | Simulated - APS not installed | | C0169-415 | Temp - Oxid Tank Outlet, Mod 2 (APS) | Simulated - APS not installed | | C0170-414 | Temp - Fuel Tank Outlet, Mod 1 (APS) | Simulated - APS not installed | | C0171-415 | Temp - Fuel Tank Outlet, Mod 2 (APS) | Simulated - APS not installed | | C0200-401 | Temp - Fuel Injection | Open - Hardwire reqm't - T/M disconnected | | C0211-411 | Temp - Fwd Batt No. 1 Unit No. 2 | *Simulated - Primary battery not installed | | D0041-403 | Press - Hydraulic System | No data - Hardwire reqm't - T/M disconnected | | D0042-403 | Press - Reservoir Oil | No data - Hardwire reqm't - T/M disconnected | | D0063-414 | Press - Fuel Sply Man, Mod 1 (APS) | Simulated - APS not installed | | D0064-414 | Press - He Reg Inlet, Mod 1 (APS) | Simulated - APS not installed | | D0065-414 | Press - He Reg Outlet, Mod 1 (APS) | Simulated - APS not installed | | D0066-415 | Press - Oxid Sply Man, Mod 2 (APS) | Simulated - APS not installed | | D0067-415 | Press - Fuel Sply Man, Mod 2 (APS) | Simulated - APS not installed | ^{*} Battery simulator heaters have been deleted; therefore, only Battery SIM Ambient was recorded. TABLE 11-2 (Sheet 2 of 3) INACTIVE MEASUREMENTS | REMARKS | Simulated - APS not installed Hardwire reqm't | Simulated - Hardwire reqm't | |--------------------|-----------------------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------|---------------------------------------|---|-----------------------------|-----------------------------|-----------------------------|----------------------------------|------------------------------| | PARAMETER | Press - He Reg Inlet, Mod 2 (APS) | Press - He Reg Outlet, Mod 2 | Press - Attitude Contr Chamber, 1-1 | Press - Attitude Contr Chamber, 1-2 | Press - Attitude Contr Chamber, 1-3 | Press - Attitude Contr Chamber, 2-1 | Press - Attitude Contr Chamber, 2-2 | Press - Attitude Contr Chamber, 2-3 | Press - Oxid Sply Man, Mod 1 (APS) | Press - Fuel Tank Ullage, Mod 1 (APS) | Press - Oxid Tank Ullage, Mod 2 (APS) | Press - Fuel Tank Ullage, Mod 2 (APS) | Press - Oxid Tank Ullage, Mod 2 (APS.) | Press - Fuel Tank Outlet, Mod 1 (APS) | Press - Oxid Tank Outlet, Mod 1 (APS) | Press - Oxid Tank Outlet, Mod 2 (APS) | · Press - Fuel Tank Outlet, Mod 2 (APS) | Posit - Main LOX Valve | Posit - Main LH2 Valve | Posit - Gas Generator Valve | Posit - LOX Turbine Bypass Valve | Posit - GH2 Start Tank Valve | | MEASUREMENT
NO. | D0068-415 | D0069-415 | D0078-414 | D0079-414 | D0080-414 | D0081-415 | D0082-415 · | D0083-414 | D0084-414 | D0089-414 | D0090-415 | D0091-415 | D0092-415 | D0093-414 | D0094-414 | D0095-415 | D0096-415 | G0003-401 | G0004-401 | G0005-401 | G0008-401 | G0009-401 | TABLE 11-2 (Sheet 3 of 3) INACTIVE MEASUREMENTS | MEASUREMENT
NO. | PARAMETER | REMARKS | |--------------------|--|-----------------------------------| | K0020-401 | Event - ASI LOX Valves, OPEN | No data - Computer reqm't | | K0095-401 | Event - T/C LH2 Inj Temp OK | No data - J-2 Engine Modification | | K0116-401 | Event - Gas Gen Valve, CLOSED | No data - Computer reqm't | | K0119-401 | Event - Main LH2 Valve, CLOSED | No data - Computer reqm't | | K0121-401 | Event - Main LOX Valve, CLOSED | No data - Computer reqm't | | K0123-401 | Event - Start Tank Disch Valve, CLOSED | No data - Computer reqm't | | K0126-401 | Event - LOX Bleed Valve, CLOSED | No data - Computer reqm't | | K0127-401 | Event - LH2 Bleed Valve, CLOSED | No data - Computer reqm't | | K0128-404 | Event - Switch Selector | No data - Computer reqm't | | L0007-403 | Level - Reservoir Oil | Simulated - Hardwire reqm't | | N0037-414. | Misc - Qty Oxid Tank, Mod 1 (APS) | Simulated - APS not installed | | N0038-415 | Misc - Qty Oxid Tank, Mod 2 (APS) | Simulated - APS not installed | | N0039-414 | Misc - Qty Oxid Tank, Mod 1 (APS) | Simulated - APS not installed | | N0040-415 | Misc - Qty Fuel Tank, Mod 1 (APS) | Simulated - APS not installed | | | \ ³ | | TABLE 11-3 MEASUREMENT DISCREPANCIES | MEASUREMENT 'NO. | PARAMETER | REMARKS | |------------------|-------------------------------------|---| | D0054-410 | Press - Fuel Tank Inlet | This transducer malfunctioned prior to static firing. Dispositioned to remove and replace during postfiring checkout. The RAC Cals read -0.123vdc and the ambient value read 104 psia, which is full scale. The transducer has been rejected per FARR A251588 (V) and A251589 (Detail). | | D0050-403 | Press - Eng Pump Purge
Regulator | Data became erratic at T ₀ +604 sec and at T ₀ +612 sec data read -9.0 psia off scale low. Postfiring checkout determined the transducer wiper was open circuited. The transducer has been rejected per FARR A255206. | TABLE 11-4 (Sheet 1 of 2) TELEMETRY TO HARDWIRE DATA COMPARISON (T₀ +213
SEC) | | | TELEMETRY | | | · | LARDWIRE | | | |-------------------------------|--------|-----------|-------|-------|----------|----------|---------------|-------| | PARAMETER | UNITS | MEAS NO. | PCM | UNITS | MEAS NO. | GIS | s/c | F/M | | Temp - Fuel Turbine Inlet | °R | C0001 | 1,704 | °R | C0755 | 1,658 | **** | 1,692 | | Temp - LH2 Pump Inlet | °R | C0003 | 37.7 | °R | C0658 | 37.6 | 37.5 | 37.8 | | Temp LOX Pump Inlet | °R | C0004 | 164.1 | °R | C0659 | 163.9 | 164.4 | 164.0 | | Temp - GN2 Start Bottle | · °R | C0006 | 221 | °R | C0649 | 231 | 240 | | | Temp - Elect Control Assy. | °R | C0011 | 530 | °R | C0657 | 528 | | | | Temp - LOX Tank He Inlet | °R | C0016 | 496 | °R | C0662 | 492 | , | | | Temp - LOX Pump Discharge | °R | C0133 | 169.8 | °R | C0648 | 169.6 | - | 169.8 | | Temp - LH2 Pump Discharge | °R | C0134 | 52.4 | °R | C0644 | 52.3 | 52.6 | | | Temp - Thrust Chamb Jacket | °R | C0199 | 135 | °R | C0645 | 141 | 129 | | | Temp - Cold He Sphere No. 4 | °R | C0210 | 36 | °R | C0661 | 36.1 | 34.1 | | | Press - Thrust Chamber | psia | D0001 | 789 | psig | D0524 | 774 | 780 | | | Press - LH2 Pump Inlet | psia | D0002 | 27.6 | psig | D0536 | 15 | 15.0 | 12 | | Press - LOX Pump Inlet | psia | D0003 | 40.7 | psig | D0537 | 25 | 28 | | | Press - Main LH2 Injector | psia | D0004 | 882 | psig | D0518 | 822 | | 875 | | Press - LH2 Pump Discharge | psia | рооов | 1,229 | psig | D0516 | 1,336 | | 1,350 | | Press - LOX Pump Discharge | psia | D0009 | 1,060 | psig | D0522 | 1,103 | | 1,080 | | Press - GG Chamber | psia | D0010 | 719 | psig | D0530 | 709 | | 680 | | Press - Cont He Reg Discharge | . psia | D0014 | 538 | psig | D0581 | 537 | 536 | 545 | | Press - Cold He Sphere | psia | D0016 | 2,104 | psig | D0542 | 2,049 | 2,100 | | | Press - GH2 Start Bottle | psia | D0017 | 298 | psig | D0525 | 286 | 300 | 290 | | Press - Eng Reg Outlet | psia | D0018 | 411 | psig | D0535 | 395 | 394 | | | Press - Cont He Supply | . psia | D0019 | 2,486 | psig | D0534 | 2,479 | 2,502 | | TABLE 11-4 (Sheet 2 of 2) TELEMETRY TO HARDWIRE DATA COMPARISON (T $_{ m 0}$ +213 SEC) | | | אמשמאמ זמנוי | | | | Tativa vi | | | |------------------------------|-------|--------------|--------|-------|----------|-----------|-------|--------| | DARMED | | THEMETER | | | | HAKUWIKE | | | | | UNITS | MEAS NO. | PCM | UNITS | MEAS NO. | GIS | s/c | F/M | | Press - He Amb Sphere | psia | D0160 | 2,899 | psig | D0541 | 2,904 | 2,905 | 1 | | Press - LOX Tank Ull EDS-1 | psia | D0177 | 29.7 | psig | D0539 | 15.1 | 15.5 | - 1 | | Press - LOX Tank Ull EDS-2 | psia | D0178 | 29.4 | psig | D0539 | 15.1 | 15.5 | | | Press - LH2 Tank Ull EDS-1 · | psia | D0179 | 37.7 | psig | D0540 | 23.5 | 23.5 | l | | Press - LH2 Tank Ull EDS-2 | psia | D0180 | 37.6 | psig | D0540 | 23.5 | 23.5 | i | | Press - Common Blkhd | psia | D0237, | -0.2 | psia | D0545 | 0.1 | 0.1 | 1. | | Flowrate LOX | gpm | F0001 | 2,907 | gpm | F0506 | 2,902 | I | 2,917 | | Flowrate LH2 | gpm | F0002 | 8,017 | gpm | F0507 | 9,186 | i | 7,978 | | Position - Pitch Act | deg | . G0001 | -0.1 | deg | G0504 | -0.1 | 0.0 | -0.1 | | Position - Yaw Act | deg | , G0002 | 0.0 | deg | G0505 | -0.1 | 0.07 | -0.1 | | Voltage - Eng Control Bus | vdc | 9000W | 28.5 | vdc | M0514 | 28.4 | 28.4 | 29 | | Voltage - Eng Ignition Bus | vdc | M0007 | 28.8 | vdc | M0515 | 28.6 | 28.7 | 29 | | Voltage - Aft Battéry - 1 | vdc | M0014 | 28.7 | vdc | M0541 | 28.7 | 1 | 29 | | Voltage - Aft Battery - 2 | vdc | M0015 | 59.3 | vđc | M0540 | 59.1 | 58.9 | 59.5 | | Voltage - Fwd Battery - 1 | opa . | M0016 | 28.1 | vdc | M0543 | 28.5 | 1 | 28.0 | | Voltage - Fwd Battery - 2 | vdc | M0018 | 26.7 | vdc | M0542 | 27.0 | 1 | 27.2 | | Current - Fwd Battery - 1 | amb | · M0019 | П | amp | M0536 | 11.6 | 11.8 | 11.5 | | Current - Fwd Battery - 2°. | amp | M0020 | 5.1 | amp | M0537 | 4.3 | 4.9 | 5.0 | | Current - Aft Battery - 1 | amp | M0021 | 10 | amp | M0534 | 11.5 | 11.25 | 11.5 | | Current - Aft Battery - 2 | amp | M0022 | 20 | amb . | M0535 | 21 | 21 | 22.5 | | Speed - LOX Pump | rpm | T0001 | 8,565 | rpm | T0502 | 8,682 | 1 | 8,688 | | Speed - LH2 Pump | rpm | T0002 | 27,260 | rpm | T0503 | 27,458 | 1 | 27,408 | | Position - PU Valve | . deg | G0010 | 30.5 | deg | G0503 | 30.5 | 32.8 | 32.5 | | | | | | | | | | | TABLE 11-5 HARDWIRE DATA ACQUISITION SYSTEM | MEASUREMENT
TYPE | RECORDED | FAILED | PARTIALLY
SUCCESSFUL | SUCCESSFUL
(PERCENT) | |---------------------|----------|--------|-------------------------|-------------------------| | Pressure | 86 | 2 | 0 | 97.7 | | Temperature | 41 | 0 - 1 | 0 | 100 | | Flow | 2 | 1 | 0 | 50.0 | | Position | 10 | 0 | 0 | 100 | | Voltage/Current | 33 | 0 | 0 | 100 | | Events/Switches | 97 | 0 | 0 | 100 | | Speed | 2 | 0 | 0 | 100 | | Level | 3 | 0 | 0 | 100 | | Vibration | 12 | 0 | 0 | 100 | | Miscellaneous | 0 | 0 | 0 | 100 | | Totals | 286 | 3 | 0 | 98.25 | ### 12. ELECTRICAL POWER AND CONTROL SYSTEMS ## 12.1 Electrical Control System The electrical control system performed satisfactorily as verified in the sequence of events (section 5). All incremental response times to switch selector commands were within the design tolerances. ## 12.1.1 J-2 Engine Control System All event measurements verified that the engine control system had responded properly to the engine start and cutoff commands. The Engine Start Command was given by the switch selector 151.844 sec after simulated liftoff. Engine cutoff was initiated at 610.862 sec. Total engine burn time was 459.018 sec. The ignition detection signal was intermittent during engine burn and was due to flame pattern and probe location. The engine cutoff signal was non-programmed. The main LOX and LH2 valves closed at 0.200 and 0.310 sec respectively after engine cutoff. The LOX and LH2 prevalves closed 1.934 and 1.739 sec respectively after engine cutoff, as verified by the digital events recorder. #### 12.1.2 Secure Range Safety Command System The secure range safety command system was tested during the engine burn phase to verify the capability of engine cutoff and propellant dispersion. Evaluation of the data showed that the arm and engine cutoff and propellant dispersion commands were received and that the EBW firing units discharged into their respective pulse sensors. The following measurements were evaluated: | Measurement
No. | Parameter | |--------------------|--| | M0030 | R/S EBW Firing Unit No. 1 | | M0031 | R/S EBW Firing Unit No. 2 | | K0141 | EBW No. 1 Pulse Sensor Indication | | K0142 | EBW No. 2 Pulse Sensor Indication | | *(K0659) | R/S No. 2 Arm and Engine Cutoff Indication | | (K0660) | R/S No. 1 Arm and Engine Cutoff Indication | ^{*} Hardwire measurements are in parenthesis. | Measurement
No. | <u>Parameter</u> | |-------------------------|--| | *(K0692) | R/S No. 2 EBW Arm and Engine Cutoff Indication | | (K0693) | R/S No. 1 EBW Arm and Engine Cutoff Indication | | N0057 | R/S No. 1 Low Level Signal Strength | | N0062 | R/S No. 2 Low Level Signal Strength | The secure range safety commands, receipt of signals and firing unit performance are shown in figure 12-1. # 12.1.3 Control Pressure Switches A review of the event and pressure measurements verified that each control item functioned properly. Each pressure switch and its associated measurements were evaluated. Listed below are those measurements and a description of their performance. K0105 Engine Pump Purge Control Regulator Backup Pressure Switch - De-energized (KO566) Engine Pump Purge Control Module Solenoid Valve - Energized KO050 Engine Pump Purge Regulator Pressure The Engine Pump Purge Control Valve Enable ON and OFF Commands were given prior to engine start. The purge orifice size and low back pressure resulted in a purge pressure buildup of 96 pisa which was below the actuation of the pressure switch (105 - 130 psia). K0131 LOX Chilldown Pump Purge Pressure Switch - De-energized D0103 He Pressure to LOX Pump Motor Control (KO565) LOX Chilldown Pump Purge Control Valve - Energized The LOX chilldown pump helium purge regulator backup pressure switch controlled the LOX pump purge control valve during the LOX Chilldown Purge Control Valve Command to maintain a regulated 49 to 53 psia purge pressure. K0156 LOX Tank Regulator Backup Press Switch - Energized (K0571) Cold Helium Shutoff Valves - Energized D0225 Cold Helium Control Inlet Pressure ^{*} Hardwire measurements are in parenthesis. The measurements indicated that the cold helium regulator backup pressure switch was de-energized during the test and that the actuation pressure of 465 psia was never attained. D0177, D0178 Fuel Tank Ullage EDS 1 and 2 Pressures The LH2 tank flight control pressure switch enabled the LH2 pressurization control module to maintain a 26.5 - 29.5 psia pressure in the LH2 tank during the period that the LH2 Tank Pressure Control Switch Enable Command was on. The ullage pressure never dropped below 26.5 psia as verified by measurements D0177 and D0178. At engine start, the pressure was 30.4 psia. K0102 LOX Prepress Flight Switch - Energized D0179, D0180 LOX Tank Ullage EDS 1 and 2 Pressures The LOX prepressurization flight control pressure switch controlled the heat exchanger bypass valve during the LOX Tank Flight Pressurization Command to maintain 37 to 40.8 psia regulated pressure in the LOX tank. ## 12.1.4 Vent Valves The LOX and LH2 vent valves are commanded OPEN and CLOSE by GSE, bypassing the switch selector. The vent valves responded to these commands and operated properly. The GSE commands and their corresponding measurements are listed below: *(K0576) Fuel Tank Vent Valve Open - Energized K0001 (K0532) Fuel Tank Vent Valve Closed K0017 (K0542) Fuel Tank Vent Valve Open (KO575) Oxidizer Tank Vent Valve Open - Energized K0002 (K0533) Oxidizer Tank Vent Valve Closed K0016 (K0543) Oxidizer Tank Vent Valve Open K0113
LH2 Tank Directional Vent Valve C - Closed KO114 LH2 Tank Directional Vent Valve D - Closed (KO561) LH2 Tank Directional Vent Valve - Ground Position (KO562) LH2 Tank Directional Vent Valve - ln-flight Position ^{*} Hardwire measurements are in parenthesis. #### 12.1.5 Chilldown Shutoff Valves These valves were not operated during the acceptance firing. # 12.1.6 Fill and Drain Valves (LH2 and LOX) The fill and drain valves were commanded CLOSED through the umbilical prior to simulated liftoff, and remained closed through the acceptance firing. A review of the following measurements verified that the valves performed satisfactorily: K0003 *(K0554) Fuel Fill and Drain Valve Closed K0004 (K0553) LOX Fill and Drain Valve Closed ## 12.1.7 Depletion Sensors (KO597) LH2 Depletion Sensor No. 1 - Wet (KO598) LH2 Depletion Sensor No. 2 - Wet (KO599) LH2 Depletion Sensor No. 3 - Wet (KO676) LH2 Depletion Sensor No. 4 - Wet (KO601) LOX Depletion Sensor No. 1 - Wet (K0602) LOX Depletion Sensor No. 2 - Wet (KO6O3) LOX Depletion Sensor No. 3 - Wet (K0604) LOX Depletion Sensor No. 4 - Wet The measurements indicated that all depletion sensors performed as expected during the acceptance firing and no malfunctions were observed. During LH2 loading, LH2 sensor No. 1 indicated dry three times at approximately 31, 34 and once at approximately 60 percent mass. Refer to paragraph 12.4 for the special test on the depletion sensor. ## 12.2 APS Electrical Control System The APS Simulator No. 188B was utilized to verify the engine control functions of APS No. 1 and APS No. 2 during the acceptance firing. Exhibits of the engine feed valves verified that the electrical control system operated within its prescribed limitations. ^{*} Hardwire measurements are in parenthesis. Listed are the monitored results: | Measurement No. | Function | Specified
Minimum Value | Actual
Value | |-----------------|-------------------------------------|----------------------------|-----------------| | K0132 | APS Eng 1-1/1-3
Feed Valves Open | 3.2 vdc | 4.2 vdc | | K0133 | APS Eng 1-2
Feed Valves Open | 3.2 vdc | 4.2 vdc | | K0134 | APS Eng 2-1/2-3
Feed Valves Open | 3.2 vdc | 4.0 vdc | | К0135 | APS Eng 2-2
Feed Valves Open | 3.2 vdc | 4.0 vdc | The specified minimum value of 3.2 vdc indicated that all of the feed valves were operating. ## 12.3 Electrical Power System The electrical power system performed satisfactorily throughout the acceptance firing. The battery voltage, current, and battery simulator temperature profiles are shown in figures 12-2 through 12-4. ### 12.3.1 Static Inverter-Converter The static inverter-converter operated within its required limits during the firing. Its actual values are shown in the following table: | Characteristics | Maximum | Minimum | Acceptable Limits | |-----------------|---------|---------|---------------------| | Voltage (vrms) | 114.50 | 114.30 | 115.0 <u>+</u> 3.45 | | Voltage (vdc) | 5.0 | 5.0 | 5.0 <u>+</u> 0.5 | | Voltage (vdc) | 21.8 | 21.7 | 21.0 +1.5 -1.0 | | Frequency (cps) | 400.5 | 400.7 | 400.0 <u>+</u> 6.0 | # 12.3.2 5-Volt Excitation Modules The performance of the forward No. 1 and No. 2, and aft 5-volt excitation modules was satisfactory during the acceptance firing. The actual values are listed below: | Characteristics | Maximum | Minimum | Acceptable Limits | |-------------------------|---------|---------|-------------------| | Aft Voltage (vdc) | 5.03 | 5.02 | 5.0 <u>+</u> 0.03 | | Forward 1 Voltage (vdc) | 5.00 | 4.99 | 5.0 <u>+</u> 0.03 | | Forward 2 Voltage (vdc) | 4.99 | 4.98 | 5.0 <u>+</u> 0.03 | ## 12.3.3 Chilldown Inverters The chilldown inverters performed satisfactorily during the acceptance firing. # 12.4 Special Depletion Sensor Test During the first LH2 loading, LH2 depletion sensor No. 1 cycled one time for 28 ms at the 30 percent loading level. On the second LH2 loading, the same sensor cycled three times for 7, 12, and 9 ms at 31, 34 and the 60 percent levels, respectively. No other abnormal cycles were noted during the remainder of the test. The cycles were of such short duration that the special test, prepared for use in case of depletion sensor cycling, could not be implemented. A Simulated Wet Command was sent to sensor No. 1 at the 5 percent level on the third loading. This would define an open system between sensor and control unit if cycling should occur. No abnormal cycles occurred for the remainder of the test. During the third loading, a helium bubble test was performed at approximately 86 and 40 percent LH2 level during detanking. Helium was bubbled at a rate of 30 scfm for 2 min. The helium was injected in the low pressure duct by way of the engine purge system. No abnormal depletion sensor activity was noted. Figure 12-1. Secure Range Safety Command System Data Figure 12-2. Battery Temperatures Figure 12-3. Aft Battery Voltage and Current Profiles Figure 12-4. Forward Battery Voltage and Current Profiles #### 13. HYDRAULIC SYSTEM # 13.1 Hydraulic System Operation The hydraulic system test program was conducted during countdown 614085, during which the engine was successfully positioned and gimbaled. System running time for this test, from auxiliary pump ON prior to simulated liftoff to auxiliary pump OFF following cutoff, was 1,316.5 sec. The gimbal program was initiated after the engine start side loads subsided and the support links dropped. The auxiliary hydraulic pump was turned off after the gimbaling program for approximately 47 sec during the firing to verify satisfactory engine-driven pump operation. Significant event times are presented in the following table: | Event | Approximate Time (sec) | |--------------------------|------------------------| | Auxiliary pump ON | T ₀ -693.5 | | Simulated Liftoff | T ₀ +0 | | Engine-driven Pump Start | T ₀ +153.2 | | Support Links Dropped | T ₀ +187.2 | | Gimbal Program Start | T ₀ +221.0 | | Gimbal Program Stop | T ₀ +277.7 | | Auxiliary Pump OFF | T ₀ +337.0 | | Auxiliary Pump ON | T ₀ +384.0 | | Engine-driven Pump Stop | T _O +610.7 | | Auxiliary pump OFF | T ₀ +623.0 | | | | # 13.2 System Pressure at Salient Times The GN2 accumulator precharge pressure was 2,309 psia at 53 deg F during prefire checkout and approximately 2,210 psia at 35 deg F after the acceptance firing. The pressure observed after the firing is equivalent to the acceptable precharge pressure limits of 2,300 to 2,400 psia at 68 deg F. Test data indicated that the auxiliary pump discharge pressure increased to 3,600 psia in 14.3 sec after energizing the pump motor. Acceptable pump pressure was maintained from T_0 -679.2 sec through T_0 -0. The simulated launch requirements were met. During the brief period that the auxiliary pump was off, the enginedriven pump pressure was observed to be 3,650 psia. The enginedriven pump supplied the system leakage flow throughout the firing since its pressure compensator setting was sufficiently higher (3,650 versus 3,600 psia) than that of the auxiliary pump. The auxiliary pump however, shared some of the gimbal flow requirements as seen from fluctuation of the motor current demand. GN2 pressure was similar to hydraulic system pressure with the pump(s) operating. The significant system pressures are shown in the following table: | TIME
(sec) | SYSTEM PRESSURE (psia) | RESERVOIR PRESSURE (psia) | |--|------------------------|---------------------------| | T ₀ -679.2 | 3,600 | 161 | | T ₀ +0 (simulated start) | 3,600 | 180 | | T ₀ +203 (after engine start transient) | 3,650 | 178 | | $T_0 + 221$ to (gimbal)
$T_0 + 277$ | 3,700
3,590 | 192
160 | | T ₀ +623 (prior to auxiliary pump OFF) | 3,630 | 180 | # 13.3 Reservoir Level at Salient Times The reservoir level prior to system operation was 90 percent at an approximate average system oil temperature of 61 deg F (equivalent to 91.2 percent at 70 deg F). Minimum level during operation was 33 percent. #### 13.4 Temperature History Hydraulic fluid and accumulator gas temperatures experienced during the hydraulic system test program were as follows: | TIME
(sec) | ENGINE-DRIVEN PUMP INLET (deg F) | RESERVOIR (deg F) | ACCUMULATOR GN2 (deg F) | |--|----------------------------------|-------------------|-------------------------| | To -693.5 (auxiliary pump ON) | 50 | 33 | 73 | | T ₀ +153.2 (ignition) | 92 | 60 | 58 | | T_0 +221 (start gimbal) | 110 | 62 | 61 | | T_0 +227.7 (stop gimbal) | 97 | 67 | | | T ₀ +610.7 (cutoff) | 136 | 75 | | | T _O +623
(auxiliary pump OFF | 137 | 84 | 61 | # 13.5 Engine Side Loads Peak loads in the support links during engine start transients were as follows: | ITEM | PEAK LOAD (1bf) | |------------|------------------| | Pitch Link | +12,000, -20,000 | | Yaw Link | +17,000, -32,000 | ### 13.6 Hydraulic Fluid Flowrates Approximations from the reservoir fill and emptying rates are presented in the following table: | ITEM | FLOW (gpm) | ALLOWABLE (gpm) | |---------------------------------|------------|-----------------| | System Internal Leakage | 0.51 | 0.4 to 0.8 | | Auxiliary Pump Maximum Flowrate | 1.77 | 1.5 min | # 13.7 Auxiliary Pump Motor Voltage and Current Auxiliary pump motor electrical data were monitored only after the stage power source had switched to internal power (batteries) and after the chilldown pumps had shut down. The design requirements are as follows: | Voltage | | 51 to 61 vac | |---------|-------------------|--------------| | Maximum | Starting Current | 300 amp | | Maximum | Operating Current | 85 amp | | TIME (sec) | VOLTAGE SUPPLY (V) | CURRENT DEMAND (amp) | |---|----------------------------|--| | T ₀ +153 (prior to ignition) | 57.5 | 32.2 | | T_0 +160 (after ignition) | 59 | 21 | | T_0 +221 to (gimbal)
T_0 +277.2 | 59 maximum
57.5 minimum | 37.5
maximum 21 minimum (52 maximum during 7 deg ramp) | | T ₀ +384 (turn auxiliary pump
ON after brief
shutdown) | 52 min | 155 peak | | T_0 +610 (prior to cutoff) | 59 | 21 | | T ₀ +623 (prior to auxiliary pump OFF) | 56.3 | 39 | # 13.8 Thrust Offset Approximate thrust offset was calculated from actuator differential pressures obtained prior to and following engine cutoff, using 164,000 lbf net thrust. The thrust offset was 0.273 in. from the stage longitudinal axis and 38.7 deg from fin plane 2 toward fin plane 1. #### 14. FLIGHT CONTROL SYSTEM The dynamic response of the hydraulic servo thrust vector control system was measured while the J-2 engine was gimbaling during the acceptance firing of the S-IVB-209 stage. The performance of the pitch and yaw hydraulic servo control system was found to be acceptable. ### 14.1 Actuator Dynamics The frequency response test of the pitch and yaw hydraulic servo control system for a \pm 1/2-deg sinusoidal signal between 0.6 and 9 cps, and for a \pm 1/4-deg sinusoidal signal between 0.6 and 2 cps verified the acceptability of the actuator responses. The acceptable limits and the gain and phase plots within these limits are presented in figures 14-1 and 14-2. # 14.2 Engine Slew Rates A nominal two-deg step command was applied to the pitch and yaw actuators from which the engine slew rates were determined. The minimum acceptable engine slew rate is 8 deg/sec, which corresponds to an actuator piston travel rate of 1.66 ips. A nominal slew rate for a 2-deg step without the effects of gimbal friction is 13.6 deg/sec. The measured values were found to be acceptable and are presented in the following table: | Actuator | Condition | Engine Travel
(deg) | Engine Slew Rate
deg/sec | |----------|-----------|------------------------|-----------------------------| | Pitch | Retract | 0.0 to +2.0 | . 10.8 | | | Extend | +2.0 to 0.0 | 10.8 | | | Extend | 0.0 to -2.0 | 10.9 | | | Retract | -2.0 to 0.0 | 10.7 | | Yaw | Extend | 0.0 to +2.0 | . 11.9 | | • | Retract | +2.0 to 0.0 | 11.3 | | | Retract | 0.0 to -2.0 | . 11.4 | | | Extend . | -2.0 to 0.0 | 11.8 | | | | | | The minimum engine slew rate obtained is 10.7 deg/sec. This corresponds to an actuator piston travel of 2.22 ips when using a conversion of 4.83 deg of engine movement per in. of actuator travel. Thus, in all cases, each actuator exceeded the minimum acceptable piston travel rate of 1.66 ips, or corresponding engine travel rate of 8 deg/sec. ## 14.3 Differential Pressure Feedback Network The differential pressure feedback network in the pitch and yaw hydraulic servo-valves was operating properly since adequate system damping was demonstrated by observing the actuator differential pressure measurements during the 2-deg step response tests. The differential pressures decreased in amplitude as a function of time without sustained ringing. The recorded data are presented in figure 14-3. # 14.4 Cross Axis Coupling A minimum amount of cross axis coupling occurred as noted by the generated actuator differential pressure in the non-gimbaled plane. Figure 14-1. Actuator Response (Gain) Figure 14-2. Actuator Response (Phase Lag) Actuator Differential Pressure (±2 Deg Transient Response) Figure 14-3. #### 15. STRUCTURAL SYSTEMS Structural integrity of the S-IVB-209 stage was maintained for the vibration, temperature, and thrust load conditions of the acceptance firing. No structural irregularities were detected during the postfiring inspection, static firing, and cryogenic loading. #### 15.1 Common Bulkhead The results of the gas sample surveys, combined with satisfactory common bulkhead pressure decay checks, indicate the bulkhead is sound and leak tight. An additional vacuum port location for common bulkhead internal pressure measurements was used for the second time, having been previously used with the S-IVB-503N stage. This port, located approximately 180 deg from the vacuum pump port, was located so the readings would be more indicative of general pressure conditions within the honeycomb filled bulkhead. It was found that during pumpdown of the common bulkhead, the pressure readings from the vacuum pump port dropped immediately to less than 1 psia; however, at the pressure port located 180 deg from the vacuum pump port the pressure gradually dropped to 10.5 psia in 6 hrs and to less than 1 psia in 9 days of pumpdown. Thus, it is evident that the newly added pressure measurement (D0237) is more accurate than the original vacuum pump port measurement (D0545) in indicating general pressure conditions within the bulkhead. During the actual acceptance firing, the bulkhead internal pressure readings from both transducers was less than 1 psia. Gas sample analyses consistently indicated negligible quantities of hydrogen and helium gases within the common bulkhead. The results of the pressure checks and gas surveys are presented in Douglas Report No. SM-37550, S-IVB-209 Stage Acceptance Firing (15 Day) Report, dated July 1967. ### 15.2 LH2 Tank Interior LH2 tank internal inspections during buyoff have been discontinued in view of a series of recent S-IVB stages having virtually no tank non-conformities requiring repair; however, as a matter of routine verification, the tank interior will be visually inspected from the manhold when the S-IVB-209 stage is erected in the VCL after storage. ## 15.3 Exterior Structure A visual inspection of the stage thrust structure, LOX tank aft dome, aft skirt, LH2 tank cylindrical section, LH2 tank forward dome, and forward skirt revealed no structural damage after the full duration acceptance firing. The inspection revealed no debonding of standoffs, tunnel clips, or the aft skirt purge membrane. # 15.4 Malfunction of LOX Tank Pressure Regulator As a result of a malfunction of the LOX tank pressure regulator, the LOX tank ullage pressure was abnormally low for a duration of 60 sec immediately following J-2 engine start. During this time a minimum LOX tank ullage pressure of 29.1 psia was obtained (refer to paragraph 7.1). Simultaneously, the LH2 tank ullage pressure was 33.7 psia. The corresponding LH2 and LOX pressure heads at the critical common bulkhead to aft dome joint were 0.8 and 2.7 psia respectively. The net differential pressure at the joint was -2.7 psid (negative pressures occur when LH2 tank pressure exceeds LOX tank pressure). The design pressure at the critical joint is -21.9 psid limit or -30.7 psid ultimate (reference page 386 of Douglas Report No. ŠM-46987, Saturn S-IVB-202 Stage Flight Evaluation Report); therefore, the critical common bulkhead to aft dome joint has adequate strength to resist the imposed negative pressure differential without detrimental effects. #### 16. THERMOCONDITIONING AND PURGE SYSTEMS # 16.1 Aft Skirt Thermoconditioning and Purge System The aft skirt GN2 purge was initiated prior to LOX loading and continued throughout the acceptance firing until the completion of tank purge. The purge system operated satisfactorily and was within the design limits. # 16.1.1 Aft Skirt GN2 Flowrate The GN2 purge flowrate of 3,400 scfm was maintained throughout the acceptance firing. ## 16.1.2 Aft Skirt GN2 Temperature The GN2 temperature at the APS module thermoconditioning system outlet sensor (CO663) held constant at 90 deg F. The aft skirt umbilical inlet temperature (CO715) varied between 105 and 110 deg F throughout the acceptance firing. ## 16.1.3 Aft Skirt Umbilical Inlet Pressure The umbilical inlet pressure (D0767) was approximately 1/2 psi (13.8 in. H_2O) throughout the firing. #### 16.1.4 Nonflight Hardware #### a. APS Module Model DSV-4B-188B APS simulators were used in place of the flight modules at APS positions 1 and 2. These substitutes functionally represent the flight module thermoconditioning system. ### b. Aft Interstage The model DSV-4B-540 dummy interstage was used to support the stage on the test stand. #### 16.2 Forward Skirt Environmental Control and Thermoconditioning System The forward skirt GN2 purge was initiated prior to LOX loading and continued throughout the firing until the completion of the tank purges. The model DSV-4B-359, thermoconditioning system servicer, supplied the methanol/water coolant fluid to the thermoconditioning system throughout the firing. #### 16.2.1 Forward Skirt GN2 Purge Flowrate A flowrate of 500 scfm was maintained during the acceptance firing which was within the design requirement of 500-600 scfm. #### 16.2.2 Forward Skirt GN2 Temperature The forward skirt GN2 internal temperature (CO768) was within 43 to 58 deg F which was above the minimum design requirement of 40 deg F. #### 16.2.3 Forward Skirt Internal Pressure The forward skirt internal pressure was approximately 0.69 in. $\rm H_2O$ which is well below the relief valve setting of 2 in. of $\rm H_2O$. ### 16.2.4 Forward Skirt Thermoconditioning System Temperature The thermoconditioning system fluid inlet temperature (C0753) was maintained between 56 to 61 deg F which is within the design temperature range of 57 \pm 7 deg F. #### 16.2.5 Nonflight Hardware Model DSV-4B-359, Thermoconditioning System Servicer The servicer supplies thermally conditioned fluid to the forward skirt cold plates during all field station operations requiring power to the forward skirt electronic equipment. When the S-IVB is staged, the cold plates will receive fluid from the NASA instrument unit thermoconditioning system. #### 17. RELIABILITY AND HUMAN ENGINEERING #### 17.1 Reliability Engineering All functional failures of Flight Critical Items (FCI) and Ground Support Equipment/Special Attention Items were investigated by Reliability Engineering. Significant malfunctions of FCI's documented are noted in table 17-1. ## 17.2 Human Engineering A Human Engineering evaluation was conducted in support of the S-IVB-209 stage acceptance firing. No significant man-machine problems were identified. TABLE 17-1 (Sheet 1 of 6) FLIGHT CRITICAL COMPONENTS MALFUNCTIONS | P/N AND S/N
 NAME | TROUBLE | CAUSE | ACTION TAKEN | | | |--|---------------------|--|-------------------|---|--|--| | 1A48431-505
S/N D-1 | Probe, Fuel
Mass | The following discrepancies were discovered while performing assembly outline modification on LH2 mass probe, lower mount: | To be determined. | The probe was removed and shipped to location A3 for further evaluation and disposition. The dis- | | | | | | l. Retaining plug was installed in such a manner as to preclude removal without damage to plug. Peelings of plug around plug port indicated maximum force had been exerted to install the plug. | | crepant probe was replaced with a like configuration probe, S/N D-6. | | | | | | 2. Kel-F plug was forced into split-sleeve. Should be loose fit. | | | | | | | | 3. Lock pin P/N 973491-1 appeared to be sawed off and rough filed on end. | | | | | | | | 4. Foreign material, rubber like, found on hollow end of lock pin. | | | | | | 1A49968-509 · Valve, Propel-
S/N 101 · lant Tank
Shutoff | | During C/D 614086 (TR1046, Run 3A) with propellants loaded, no hardwire talkback was received from the valve when prevalves were commanded closed. The valve also exhibited a slow opening time (3.010 sec). | To be determined. | The valve was removed and sent to location A-MRCC for additional test and evaluation. The discrepant valve was replaced with a like configuration valve, S/N 109. | | | TABLE 17-1 (Sheet 2 of 6) FLIGHT CRITICAL COMPONENTS MALFUNCTIONS | P/N AND S/N | NAME | TROUBLE | CAUSE | ACTION TAKEN | |------------------------|---|---|--|--| | 1A66212-505
S/N 015 | Electronics Assembly, Inverter- Converter, Static | During prefiring system checkout, unit was found to be inoperative. No output was obtained with an input of 28 vdc. | To be determined. | The unit cover was removed at location A45 and the internal components inspected for signs of wire and module damage from heat or electrical shorting. No visible damage was noted. The unit was removed and routed to location A-MRCC for additional disposition, test, and possible SFA. The discrepant unit was replaced with a like configuration unit, S/N 00011. | | 1A66248-507
S/N 68 | Actuator
Assembly,
Hydraulic | Nicks and scratch marks were found around the rod end of hydraulic actuator. | Caused by installation and removal of the midstroke locks. Due to the close tolerance between the lock and rod end, technicians must gently rock J-2 engine in order to install or remove locks. Using this method, the locking halves tend to penetrate the softer metal at the rod ends. | The nicks and scratches were removed with crocus cloth and hand stone. At the completion of rework and inspection, actuator was found acceptable by engineering for use. | TABLE 17-1 (Sheet 3 of 6) FLIGHT CRITICAL COMPONENTS MALFUNCTIONS | | P/N AND S/N | NAME | TROUBLE | CAUSE | ACTION TAKEN | | | |-----|--|---|--|---|--|--|--| | | 1B42290-503
S/N 0025 | Module, Control, LOX Tank Pressurization During prefiring system checkout per procedure 1B71877, leakage of 2,500 scim was measured through the cold helium shoff valve segment of the module. Maximum allowable leakage is 375 scim. | | Not determined at location A45. Believed to be the shutoff valve main poppet seat (3 ply .010 mylar). | EWO 32607 revises Drawing 1B42290 and creates -505 configur- ation identical to the -503 except for the shutoff valve main poppet seats (Vespel, SP-1) and the addition of a circle-seal check valve in the top vent of the regulator. The module was routed to location A3-MRCC for further disposition. The discrepant module was replaced by a -505 configuration module, S/N 0037. | | | | - 1 | 1B42290-503 S/N 0037 Module, Control, LOX Tank Pressurization | | During C/D 614085 (TR1046, Run 2A) the output of the module regulator was 222 to 230 psia after mainstage ignition. The output should not exceed 410 ±25 psig. | To be determined. | The module was sent to location A-MRCC for further investigation and test. The discrepant module was replaced with a like configuration module, S/N 0028. | | | TABLE 17-1 (Sheet 4 of 6) FLIGHT CRITICAL COMPONENTS MALFUNCTIONS | | | e e | ਰ | |-----------------------------------|--------------|---|---| | | ACTION TAKEN | The module was removed and shipped back to location A3. It was dispositioned at A3 as "acceptable to engineering for use" due to the known history of the module (Ref. ROD #165). No further action will be taken regarding this case. The module was replaced with a like configuration module, S/N 022. | The valve was remcved and shipped to location A3-MRCC for evaluation and final disposition. The discrepant valve was replaced with a like configuration valve, S/N 040. | | MALE UNCE LONG | CAUSE | During prefire checkout at location A45, FARR A24544 was written removing the module from the vehicle and FARR A245479 was written against the module. Engineering requested this action because of the malfunction noted on ROD #165 and because there was no information available at location A45 pertaining to this assembly. There was no malfunction of the module at location A45. | To be determined. | | FEIGHT ONTHIOUR COMENIA FRANCIONS | TROUBLE | During propulsion systems checkout at location A3-VCL, this module malfunctioned twice. The regulator discharge pressure went to approximately 600 psig. The regulator output. should be 475 +25 psig. The regulator operated satisfactorily during seven tests that followed. Because the malfunction did not repeat, no FARR was written at A3 and the module was not replaced; however, the malfunction was recorded in location A3-SPB ROD #165 which is a description of the propulsion systems checkout at location A3. | The valve failed during the leak check per procedure 1B70773. The reverse leakage was 8,400 scim. The leakage should not exceed 6,000 scim. | | | NAME | Module Assembly Pneumatic Power Control | Valve, Check,
Chill System | | | P/N AND S/N | 1B43657-509
S/N 016 | 1B53920-501
S/N 51 | TABLE 17-1 (Sheet 5 of 6) FLIGHT CRITICAL COMPONENTS MALFUNCTIONS | P/N AND S/N | NAME | TROUBLE | CAUSE | ACTION TAKEN | |-------------------------|-----------------------------|---|--|--| | 1B57781-501
S/N 0011 | Module, Cold
Helium Fill | During the checkout per procedure 1B57781, the reseat pressure was found to be 3,195 psig. The procedure calls for a reseat pressure between 3,200 and 3,500 psig. | Suspected improper adjustment of the relief valve. | The module was removed and shipped to the vendor for rework to -503 configuration. The discrepant module was replaced with a -503
configuration module, | | | | | | S/N 31. WRO S-IVB-
3171 R2 1B58006 calls
for replacing the
1B57781-501 module
with a -503 configura-
tion. | | 1B57781-503
S/N 0031 | Module, Cold
Helium Fill | The module failed during the test per procedure 1B57781 when removed from the stage and sent to A45 LOX Lab for test in compliance with 1B70773. The recorded cracking pressure was found to be 3,180 psig. The procedure calls for a cracking pressure between 3,200 and 3,500 psig. | Not determined at location A45. | The module was sent to location A-MRCC for evaluation and test. The failure mode could not be duplicated (cracking pressure was 3,280 psig) and the module was found to be acceptable to engineering for use. The module was returned to location A45 for installation on the stage. | | | | | | | TABLE 17-1 (Sheet 6 of 6) FLIGHT CRITICAL COMPONENTS MALFUNCTIONS | P/N AND S/N NAME | | TROUBLE | CAUSE | ACTION TAKEN | |--|------------|---|-------------------|---| | 1B57781-503 Module, Cold
S/N 0031 Helium Fill | | During C/D 614085 (Task 51) post-test securing, the cold helium fill valve was frozen in the "open" position. The valve could not be cycled at ambient temperature. | To be determined. | The module was removed and sent to the vendor for investigation and rework. The discrepant module was replaced with a like configuration module, S/N 0034. | | 103826
S/N J-2083 | J-2 Engine | During engine field inspection prior to acceptance firing, the actuation time of the gas generator control valve was 128 ms instead of 140 ms. | | Unit control pneumatics line was re- orificed to correct valve timing. The .047 dia orifice was replaced by Rocketdyne with a .043 dia orifice. This is a GFE item. | #### 1. ENGINE PERFORMANCE PROGRAM (PA49) This appendix contains the digital printout of computer program PA49 which is a compilation of computer programs AA89, G105, and F823. These computer programs are the methods employed in the propulsion system performance reconstruction of the S-IVB-209 stage acceptance firing. The performance analysis and associated plots are presented in section 6. Printout symbols are presented in table AP 1-1 and the digital printout is contained in table AP 1-2. ## TABLE AP 1-1 PROGRAM PA49 PRINTOUT SYMBOLS | | and the second of o | | المراجع والمحارج والمراجع والمراجع والمراجع والمناوي المستميل والمنطوع والمستميل والمستمين والمستمين | |---------|--|--------|--| | FSUB1 | Stage thrust from AA89 (1bf) | EMR 3 | Engine mixture from F823 | | WDOTT1 | Total flowrate from | ISP 3 | Specific impulse from F823 (sec) | | WDOT01 | AA89 (1bm/sec LOX flowrate from | MSUB03 | LOX mass onboard from F823 (1bm) | | WDOTF1 | AA89 (1bm/sec) LH2 flowrate from | MSUBF3 | LH2 mass onboard from F823 (1bm) | | EMR 1 | AA89 (1bm/sec)
Engine mixture ratio | FSUB4 | Predicted stage thrust (1bf) | | ISP 1 | from AA89 Specific Impulse from | WDOTT4 | Predicted total flowrate (1bm/sec) | | MSUB01 | AA89 (sec) LOX mass onboard from | WDOTO4 | Predicted LOX flowrate (1bm/sec) | | MSUBF1 | AA89 (1bm) LH2 mass onboard from | WDOTF4 | Predicted LH2 flowrate (1bm/sec) | | FSUB2 | AA89 (1bm) Stage thrust from G105 | EMR 4 | Predicted engine mixture ratio | | WDOTT2 | (1bf) Total flowrate from | ISP 4 | Predicted specific impulse (sec) | | WDOTO2 | G105 (1bm/sec) LOX flowrate from | MSUB04 | Predicted LOX mass onboard (1bm) | | WDOTF2 | G105 (1bm/sec) LH2 flowrate from G105 | MSUBF4 | Predicted LH2 mass onboard (1bm) | | EMR 2 | (1bm/sec) Engine mixture ratio | THRUST | Composite stage thrust (1bf) | | ISP 2 | from G105 Specific impulse from | T FLOW | Composite total flowrate (1bm/sec) | | MSUBO2 | G105 (sec) LOX mass onboard from | O FLOW | Composite LOX flowrate (1bm/sec) | | MSUBF2 | G105 LH2 mass onboard from | F FLOW | Composite LH2 flowrate (1bm/sec) | | FSUB 3. | G105 (1bm) Stage thrust from | *EMR* | Composite engine mixture ratio | | WDOTT3 | F823 (1bf) Total flowrate from | *ISP* | Composite specific | | WDOTO3 | F823 (1bm/sec) LOX flowrate from | O MASS | impulse (sec) Composite LOX mass onboard | | | F823 (1bm/sec) | F MASS | (1bm) Composite LH2 mass | | ODOTF3 | LH2 flowrate from F823 (1bm/sec) | | onboard (1bm) | ## TABLE AP 1-2 (Sheet 1 of 6) ENGINE PERFORMANCE PROGRAM (PA49) | TIME FSUR 1 WOOTTI WOOTTOL WOOTFL EMR 1 ISP 1 MSURDI MSURDI | FSUB 2
WODIT2
WODIT2
WODIF2
EHR 2
ESP 2
MSUBD2
MSUBD2 | FSU8 4 WOOTE3 WOOTE3 EMB 3 TSP 3 MSU8F3 | FSUB 4
4011T4
WROTD4
WROTD54
FMR 4
ISP 4
MSUBU4
MSUBF4 | THRUST T FLOW D FLOW F FLOW EEMR* *150* D HASS F MASS | 6.100
172181.662
399.457
323.314
76.143
4.246
431.040
192187.805
37756.678 | 193504.428
453.117
374.454
78.663
4.760
427.351
192078.850
37/47.492 | 193350.928
450.387
371.602
78.785
; 4.717
-427.299
192046.215
37774.847 | 231468.832
543.905
460.613
83.291
5.530
425.580
191788.863
37667.007 | 186345.672
434.320
356.457
77.864
4.574
429.130
192104.289
37759.672 | | |---|---|---|--|--|--|---|--|---|---|--| | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
193215.000
38047.000 | 0.000
3.475
3.416
0.059
57.810
0.000
193215.000
39047,000 | 0,000
1,479
0,250
1,219
0,214
0,000
193215,000
38947,000 | 0.000
0.000
0.000
0.000
0.000
0.000
193273.000
38000.000 | 0.000
1.611
1.225
0.426
19.341
0.000
193215.000
38047.000 | 6.200
172676.055
399.991
323.770
76.194
4.250
431.770
192155.405
37749.330 | 193702.537
453.562
374.996
78.566
4.773
427.511
192041.332
37739.603 | 193710.355
451.308
372.422
70.886
4.721
429.233
192006.928
37760.931 | 231463.910
543.892
460.601
83.291
5.530
425.570
191742.699
37658.637 | 186764.990
434.953
357.071
77.842
4.541
429.461
192368.555
37751.454 | | | 1.000
218.192
32.366
22.566
9.801
2.302
6.741
193190.209
38041.037 | 0.000
12.525
2.393
10.132
0.236
0.000
193211.963
38041.021 | 0.000
1.471
0.259
1.212
0.214
0.000
193214.303
38045.757 | 447.604
4.852
0.000
4.852
0.000
92.249
193272.564
37995.167 | 72.731
15.454
8.406
7.048
0.917
2.247
193205.488
38042.604 | 6.205
172/15.932
400-115
323-918
76-19/
4-251
431-660
192153-779
37748-64/ |
193741.078
453.629
375.080
78.569
4.774
427.532
197039.451
37739.209 | 193754.781
451.403
372.509
78.894
4.722
427.228
192007.057
37760.535 | 231463.664
543.891
460.601
83.291
5.530
425.570
191740.395
37653.218 | 186803.93G
435.049
357.162
77.847
4-582
429.475
192066.760
37751.453 | | | 2.000
16566.352
86.672
48.743
37.929
1.285
191.138
193155.154
38020.645 | 17136.405
95.674
56.464
39.230
1.439
179.075
193196.154
38020.166 | 16486.111
13.238
6.331
6.908
0.917
1275.534
193211.979
38042.367 | 43407.979
113.200
65.825
47.375
1.389
383.462
193234.223
37965.003 | 16862.966
65.202
37.179
28.072
1.214
548.533
193187.760
38027.725 | 7.000
21052.75a
481.549
400.850
80.709
4.967
437.240
191658.760
37686.1F0 | 213307.453
487.773
408.351
79.422
5.142
437.309
191731.275
37076.229 | 213299.707
499.087
417.740
81.347
5.135
427.380
191693.078
37702.544 | 231424.533
543.790
460.505
83.286
5.529
425.577
191373.903
37591.677 | 212386.637
489.470
405.930
80.409
5.031
433.976
191764.359
47688.317 | | | 3.000
100344.920
188.671
135.475
53.196
2.547
531.853
193076.320
37974.264 | 112398.611
211.030
156.302
54.729
2.856
532.618
193107.203
37972.428 | 115684.021
244.568
194.878
44.091
4.022
463.533
143112.152
38011.133 | 165017.518
355.977
271.929
04.048
4.558
463.562
193077.646
37910.944 | 109475.517
216.423
163.875
52.538
3.142
509.334
193099.557
37985.941 | 8.000
223723.020
222.651
440.217
822.435
5.340
420.437
191440.304
37604.382 | 222214.785
220.343
438.667
81.576
5.371
427.054
191403.113
37595.173 | 2/2104.746
520.476
438.238
82.238
5.329
426.734
191260.377
37620.375 | 231375,309
543,663
460,384
83,279
5,529
425,586
190913,023
37507,983 | 222747.516
521.157
439.040
82.116
5.347
427.408
191334.797
37606.643 | | | 4.000
162647.129
361.517
292.179
69.316
4.215
449.901
192850.573
37913.138 | 187939.219
409.682
338.117
71.564
4.725
446.296
192845.170
37909.301 | 181765.482
424.531
344.338
76.193
4.404
430.183
172810.863
37934.550 | 216090.441
494.556
-416.029
76.527
5.298
436.439
192703.844
37839.064 | 175750.609
397.910
324.835
73.075
4.448
442.177
192835.518
37920.330 | 9.000
22502.471
529.275
446.334
82.941
5.381
426.248
190927.102
37521.230 | 223689.355
527.300
444.764
82.336
5.404
424.217
19060,604
37512.617 | 223438.328
523.940
441.115
82.325
-326
476.458
190819.510
37537.421 | 231564.840
544.143
450.845
83.303
5.532
425.555
190451.971
37424.280 | 224243,333
526.8 a b
444.138
82.771
5.370
425.641
190892.472
37523.756 | | | 4.100
164367.402
367.832
297.719
70.114
4.245
446.451
192820.977
37906.140. | 184480,361
417,095
344,341
72,753
4,733
442,299
192811,002
37902,067 | 183206.680
420./03
34/.107
79.597
4.361
427.354
192776.109
37930.573 | 217300.160
498.897
417.984
78.914
5.297
437.314
192662.098
37831.150 | 177351,479
403.877
329.772
74.154
4.447
439.512
1928.72.675
37912.926 | 10.000
226359.891
531.793
448.791
83.207
5.374
425.490
190549.111
37437.817 | 724919.771
>30.236
447.606
82.630
5.417
224.188
190413.920
37429.826 | 224580.496
520.931
444.075
82.256
2.406
426.774
190373.074
.37454.344 | 231546.789
544.101
460.800
83.301
5.532
425.559
189991.880
37340.566 | 225386.719
>29.722
447.074
82.678
5.476
425.434
190446.234
37440.729 | | | 4.119
164439.406
368.472
298.290
70.192
4.249
446.283
192817.969
37905.432 | 184020,842
417,769
344,928
72,841
4,735
441,927
192807,523
37901,333 | 183357.926
427.051
347.478
77.573
4.367
427.363
192774.631
37927.75 | 217421.119
497.131
418.179
78.952
5.297
437.351
192657.904
37830.355 | 177473.416
404.431
330.229
74.202
4.451
439.191
192790.371
37912.180 | 15,000
227753,350
534,973
452,181
82,791
5,462
425,779
188294,305
37021,073 | 227615.986
536.958
454.589
82.368
5.519
424.272
138154.990
37016.006 | 22768/-143
534.825
451.380
82.445
5.475
420.521
188129.004
37042.137 | 231347.494
543.589
460.317
93.272
5.528
425.593
187685.773
36922.073 | 227752.153
535.252
452.717
R2.515
5.425
425.507
188192.445
37026.405 | | | 5.000
169376.621
393.050
318.078
74.973
4.243
430.929
192591.100
37840.153 | 190324.592
444.489
367.127
77.361
4.746
428.188
192487.582 | 190327.650
442.030
367.074
76.956
4.744
430.772
192452.145
37861.228 | 224680.352
513.151
431.440
81.711
5.280
437.845
192279.053
37758.293 | 183342.285
426.523
350.093
76.430
4.577
429.806
192493.605
37845.048 | 20.000
229172.553
538.092
455.762
873.320
5.316
425.907
186022.105
36606.353 | 22P629.662
>38.836
456.544
82.292
5.548
424.303
185473.205
3603.427 | 228668.777
533.451
453.946
81.005
5.561
427.058
185856.846
36632.377 | 231124.499
543.047
459.824
73.223
5.525
425.615
185383.083
36503.739 | 228873.654
537.456
455.354
82.072
5.5-9
425.756
185919.363
36614.051 | | | 6.000
171703.911
398.970
322.884
76.087
4.244
430.466
192220.160
37/64.319 | 193230,453
452,683
373,421
78,762
4,748
426,869
192116,314 | 193120.275 449.890 371.144 74.746 4.713 429.274 19203.418 37784.752 | 231478.818
543.939
460.637
83.273
5.530
425.567
191834.910
37675.376 | 186022.176
413.848
355.963
77.965
4.568
4.28.837
192139.763
37767.467 | 25.000
220344.350
538.724
456.541
82.353
5.544
425.560
183759.289
36192.600 | 228708.771
540.143
457.962
82.181
5.573
423.423
153583.590
36190.676 | 535.58h
453.77H
81.410
5.547
426.880
[183590.334 | 542.816
457.562
83.154
5.528
425.587
183082.484 | 228894.953
538.215
455.074
82.124
5.554
425.238
183637.735
36201.880 | | ## TABLE AP 1-2 (Sheet 2 of 6) ENGINE PERFORMANCE PROGRAM (PA49) | | | | | | | | | - | | | | |---|-------------------------|-------------------------|-----------------------|-------------------------|----------------------------|---|-----------------------|----------------------------------|-----------------------|-----------------------|-------------------------| | | 30.000 | | | | | | 80.000 | 229497,680 | 229524.725 | 230852.713 | 230083.508 | | | 230203.374 | 229598.783 | 229710.984 | 231048.240
542.969 | 279837.695
540,453 | | 231228.123 | 539.661 | 538.236 | 542.797 | 540.565 | | | 541.565
459.052 | 541.958
459.651 | 53/.834
456.531 | 459.872 | 458,412 | | 460.840 | 456.550 | 455.454 | 460.012 | 457.617
82.948 | | | 82.513 | 82.307 | 31.302 | 83.097 | #2.041
5.588 | | 82.951
5.550 | 83.111
5.493 | 82.782 | 82,795
5.557 | 5.517 | | | 5.56.5 | 5.585
423.647 | 5.615
427.104 | 5.534
425.527 | 425.274 | | 425.211 | 625 262 | 620.439 | 425.302 | 425.637 | | | 425.070
181448.459 | 181287.650 | 141311.668 | 186781.502 | 181349.258 | | 158371.453 | 158278.863
31622.187 | 158425.752 | 157735.133 | 158358,688
31637.740 | | | 35778.590 | 35778.290 | 15612.830 | 35668.061 | 35789.904 | | 31615.52/ | 31022.107 | 31073.312 | 314.77.773 | 3103.1.10 | • | 85.003 | | | | | | | 35.000 | 230174,469 | 230229.816 | 231093.746 | 230429.027 | | 230938.303 | 228621.932 | 228719.797 | 230773.119 | 229476-576 | | | 230882.803 | 543.048 | 534.211 | 543.143 | 541.604 | | 543.099 | 538.829 | 536.023
453.823 | 542.610
459.851 | 539.317.
456.619 | | | 459.893 | 460.692 | 457.614 | 460.089
83.054 | 459.400 | | 460.195
82.903 | 455.837
82.992 | 84.200 | 82.759 | 82.698 | | | 82.660 | 82.356
5.594 | A1.598
>.508 | 5.540 | 5,529 | | 5.551 | 5.493 | >.571 | 5.557 | 5.522 | | | 5.564
425.549 | 423.857 | 426.975 | 425.475 | 425,460 | | 425.273
156066.801 | 424.294
155991.756 | 420.697
156149.447 | 425,302
155433,260 | 425,405
156069.332 | | | 179148.827 | 178986.967 | 1791127.056 | 178479.318
35250.641 | 179054,470
35177,448 | | 31198.583 | 31205.596 | 31259,803 | 31084.045 | 31221.327 | | | 35364.049 | 35365.256 | 35403.040 | 372701011 | 40,000 | | | | | | 90.000 | | | 230695.768 | 230495.874 | | | 231373.814 | 230455.939 | 230553.217 | 231134.127 | 230794.322
541.989 | | 231370.115 | 230093.227
542.615 | 22999/.13/ | 542.425 | 542.111 | | | 543.213 | 542.691
460.158 | 540,062
458.282 | 543.282
460.254 | 499.665 | | 461.247 | 459.608 | 450.570 | 459.691 | 459.142 | | | 460.558
82.654 | 82.533 | 81.779 | 83.028 | 82.322 | | 82.975 | A3.007
5.537 | 82.922 | #2.735
5.556 | 82.969 | | | 5,572 | 5.575 | 3.604
426.902 | 5.543
425.440 | 5.584
425.H30 | | 5.559
425.137 | 424.045 | 420.321 | 425.304 | 425.168 | | | 425.936 | 424,654
176684,328 | 176740.193 | 176176.236 | 176756,557 | | 153759.213 | 153699.834 | 153868.121 | 153132.195 | 153775-723
30804.649 | | | 34948.91/ | 34951.314 | 34991.317 | 34833.374 |
34963.449 | | 30781.597 | 30/88.622 | 30843.787 | 30000.231 | 304041041 | 26 22 1 | | | | | | | 45.000 | | 230759.201 | 231188.123 | 231063.051 | | 95.00J
231534.311 | 229945,049 | 229704.270 | 231023.041 | 230374.541 | | | 231713.439
543.878 | 230716.520
543.661 | 230759.201
540.766 | 543,456 | 542.769 | | 544.612 | 542.016 | 539.075 | 543.279
460.516 | 541.901
458.705 | | | 461.149 | 461.016 | 458.687 | 460.452 | 460.294
82.495 | | 461.545
83.063 | 458.981
83.736 | 455.591
93.484 | 82.763 | 93.176 | | | 82.730 | 82.645 | 82.080
583.c | 83.005
5.547 | 3.580 | | 5.550 | 5.528 | 7.457 | 5.364 | 5.514 | | | 5.574
426.039 | 5.578
424.376 | 420.726 | 425,403 | 425.714 | | 425.136 | 424.240 | 425.108 | 425.238
150828.698 | 425.161 | | | 174538.254 | 174381.756 | 174450.393 | 173872.289 | 174456.799 | | 151449.77/ | 30.171.839 | 30420.583 | 30252.427 | 30387-659 | | | 34533.378 | 34536.708 | 34317.277 | 344101222 | 100.000 | | | ***** | 229926.314 | | | 50.000
85.37.231 | 230733.049 | 230755.412 | 231264.244 | 231141.926 | | 231235.262 | 229369,44 <i>1</i>
541,855 | 229174.240
537.545 | 231107.541
543.513 | 541.137 | | | 544.170 | 542.951 | 540.915
450,492 | 543.688
460.704 | 542.679
459.980 | | 543.910
460.902 | 458.871 | 454.548 | 460.752 | 458.107 | | | 461.315
82.855 | 460.134
82.817 | 82.422 | 82.984 | A2.678 | | 83.063 | A2.9A5 | 83.097
>.470 | 82,761
5,567 | 43.030 | | | 5.568 | 5.556 | 2.563 | 5.552 | 5.542
425.928 | | 5.552
425.135 | 5.530
423.304 | 428.255 | 425.211 | 424.998 | | | 426.272 | 424.961 | 172160.664 | 425.362 | 172156,455 | | 149139.277 | 149104.492 | 149290.543 | 148523.495 | 149150.104 | | | 172230.164 | 172078,539
34121,288 | 34154.800 | 33494.201 | 34134.502 | | 29947.330 | 29955.156 | 30009.035 | 29836.561 | 243761301 | | | **** | | | | | | | | | | | | | | | | | | | 1 | | | | | | | 55.000 | | | | 230957.699 | | 231062.121 | 729155.977 | 229176.834 | 231189.301 | 229798.309 | | | 231808.250 | 230510.623
542.685 | 730554.230
540.363 | 231343.495 | 542.597 | | 543.550 | 540.147 | 53/.127 | 543.742 | 540.277
457.582 | | | 544.474
461.53/ | 459.953 | 450.127 | 450.457 | 459.872 | | 460.644 | 457.288
82.859 | 454.815
P2.312 | 460.987
82.755 | R2.695 | | | 82.935 | 82.732 | 52.234 | * 82.967
5.556 | 82.615
5.545 | | 82.914 | 5.519 | >.525 | 5.570 | 5.513 | | | 3.565
425.741 | 5.560
424.760 | 420.665 | 425.374 | 425.724 | | 425.097 | 424.247 | 420.672
147018.601 | 425.182
146216.918 | 425.337 | | | 169920.830 | 169776.295 | 169871.209 | .169260.785 | 169856.109 | | 146832.596 | 145313.813 | 29593.435 | 29420.715 | 29554.372 | | | 33700.964 | 33705.727 | 33749.194 | 33582.267 | 33/10.8/0 | | 29530.401 | 247777221 | 110.000 | | | 230901.168 | 229558.041 | | | 60.000
231698.60/ | 230249.908 | 230225.508 | 231426.367 | 230724.674 | | 230766.775 | 229u79.936
539.913 | 229017.400 | 543.024 | 539.959 | | ÷ | 544.784 | 542.690 | 539./17 | 544.164
461.210 | 542.39 <i>1</i>
459.599 | | 543.335
460.447 | 457,285 | 454.325 | 460.323 | 457.352 | | | 461.721
83.063 | 459.847
82.843 | 457.227 | 82.954 | 82.798 | | 62.801 | 12.628 | 82.300
5.520 | 92.701
5.566 | 82.606
5.536 | | | 5.559 | 5.551 | 5.543 | 5.560 | 5.551
425,362 | | 5.555
425.089 | 5.534
424.290 | 476.174 | 425.213 | 425.384 | | | 425.304 | 424.275 | 420.567 | 425.288
166953.135 | 167554.254 | | 144526.952 | 144525.027 | 144741.805 | 143910.412 | 144597-938
29138-878 | | | 167610.426
33283.974 | 33289.486 | 33335.427 | 33165.402 | 33303.128 | | 29113.66.7 | 29123.708 | 29179.251 | 29004.964 | 29[10] | | | | | • | | | | | | • | | | | | | | | | | | | | | | | | | 65.000 | | 220504 3/1 | 231110.682 | 230943.059 | | 115.00J
230778.953 | 228594,182 | 228554,764 | 730834.988 | 229345.943 | | | 231725.79/ | 230505.027
542.788 | 230598.361
540.283 | 543.383 | 442.671 | | 543.060 | 540.153 | 535.768 | 542.87Z
460.196 | 539.541
457.128 | | | 461.919 | 459,868 | 458.144 | 460.494 | 459.977
82.654 | | 460.350
82.710 | 457.632
82.522 | 453,40Z
82.366 | 82.676 | 82.533 | | | 83.024 | M2.920 | 82.139
5.578 | 82.887
5.556 | 5.562 | | 5.566 | 5.546 | 5.505 | 5.566 | 5.539 | | | 5.564
425.229 | 5.546
424.669 | 425.810 | 425.318 | 425.570 | | . 424.760 | 423,387 | 426.511 | 425.210
141606.193 | 424,946 | | | 165299.315 | 165170.318 | 1652*/.511 | 164645.549
32748.674 | 165252.504 | | 142222.357 | 28708.170 | 28763.987 | 28589.465 | 28723.058 | | | 32866.670 | 32873.003 | 32421.391 | 321491014 | 3Eu | 70.000 | | | | | | 120.000 | | 3 | 220742 874 | 228300.250 | | | 231804.416 | 230433.721 | | | 230867.930 | | 230802-059 | 227896,627
538,441
456,229 | 227702.072
533.617 | 23076a.875
542.720 | 538,376 | | | 545.199 | 542.764 | 540.191 | | 542.718
459.703 | | 460.301 | | 451.397 | 460.069 | 455.976 | | | 462.175
83.023 | 459,761
83,002 | | 82.855 | 82,955 | | . 82 . 773 | 82.212 | 52.220
5.490 | 82.651
5.566 | 82.400
5.534 | | | 5.56/ | 5,539 | 5.521 | 5,556 | 5.542
425.394 | | 5.56L
424.493 | 5.549
423.252 | 425,715 | 425.208 | 424.997 | | | 425.174 | 474.556 | | 425.313
167341.277 | 162950.459 | | 139918.271 | 139450.193 | 140195.666 | 139304.023 | 140021+377 | | | 162987.262 | 162868.586 | | | 32470.891 | | 28280.029 | . 28292.965 | 29348,357 | 28174.693 | 28307,137 | | | 25.47.4.00 | | | | | | | | | | | | | | | | | | | 1 | | | | | | | 75.000 | | | 230934.418 | 230460.557 | | 231044.535 | 728667.521 | 223511.262 | 230703.789 | 229407.770 | | | 231300.570 | 230024.672
54[,138 | | | 541,490 | | 543.744 | 538,769 | 535.700 | 542.571
459,945 | 539.404
455.838 | | | 543.941
460.979 | 458.060 | 450.720 | 460.172 | 458.586 | | 460.979 | 456.364
82,406 | | #Z,626 | 82.566 | | | 82.962 | 83.078 | 82.672 | 82.820 | . 82.904
5.532 | | .82.765
5.570 | 5,538 | 5.491 | 5.567 | 5.533 | | | 425.231 | 5,514
425,076 | | 425.307 | 475.606 | | 424.919 | 424 42A | 426,556 | 425.205 | 425,302
137/35,266 | | | 160671.854 | 160570.750 | 160707.918 | 160037.805 | 160652,172 | | 137612.04> | 27878.176 | 27933.138 | | | | | 32032.470 | 32039.148 | 32091.074 | 31916.021 | 32054,230 | | 210031177 | | | | | | | | | | | | | | | | | | ## TABLE AP 1-2 (Sheet 3 of 6) ENGINE PERFORMANCE PROGRAM (PA49) | 130.000
231193.363
544.0029
461.258
82.832
5.569
424.918
135303.799
27445./71 | 229158.818
541.855
459.240
82.615
5.559
422.915
135.374.078
27462.554 | 229113.889
530.715
454.736
81.979
5.547
420.881
135652.680
27517.968 | 230540.801
542.424
459.821
82.504
5.567
425.204
134700.146
27343.723 | 229A22.020
540.8d7
457.411
82.475
5.558
424.905
135443.518
27475.431 | 180,000
231392,582
544,420
461,170
83,756
5,539
+25,021
117753,864
23272,402 | 229397.470
540.945
458.232
82.713
5.540
424.068
112465.622
23307.525 | 229433.320
53'.723
457.369
82.154
5.545
420.676
112880.761
23372.597 | 230546.867
542.305
459.823
82.482
5.575
425.124
111677.738
23195.369 | 230074,441
541,031
456,374
82,708
5,542
425,255
112533,415
23317,578 | |---|--|---|---|---|--|---|--|---|--| | 135.000
231302.555
544.287
461.353
82.933
5.563
424.965
132994.521
27028.289 | 229899,008
542,008
459,373
82,635
5,559
424,162
133076,582
27046,608 | 229853.121
530.786
450.437
82.351
5.543
426.612
133370.617
27103.355 | 230581.230
542.281
459.695
82.586
5.566
425.206
132399.143
26928.695 | 230351.559
541.674
459.054
82.640
5.555
475.246
133147.238
27059.417 | 185.000
231108.510
543.942
460.912
83.030
5.551
424.677
109446.630
22854.306 | 230178.932
540.384
457.670
82.714
5.533
425.955
110171.932
22891.932 | 230076.506
534.034
455.041
82.793
5.502
420.356
110600.309
22757.398 | 230498.135
542.193
459.729
82.464
5.575
425.122
109376.671
22786,948 | 230454.648
541.320
458.408
82.912
5.529
425.729
110239.675
22901.378 | | 140.000
231063.334
543.704
460.814
82.890
5.559
424.980
130687.336
26610.730 | 229191.158
540.789
458.340
82.449
5.559
423.809
130.778.176
26030.620 | 22904d.811
530.822
454.453
82.30d
>>>17
420.676
131089.584
26688.657 | 230521.662
542.138
459.570
82.569
5.566
425.208
130098.782
26513.751 | 229767.766
540.438
457.869
82.569
5.545
425.155
130851.697
26643.335 |
190.000
231/38.355
544.286
461.210
81.075
5.552
424.844
107636.847
22437.157 | 229+23,014
541,379
58,596
82,782
5,540
423,776
107876,855
22,76,278 | 229593.527
537.665
456.032
31.533
5.586
427.0001
108316.113
22543.244 | 230449.402
542.080
459.634
82.446
5.575
425.120
107076.073
22366.618 | 230081.797
541.110
458.613
82.497
5.559
425.208
107944.004
22485.360 | | 145.000
231095.17a
543.627
460.599
83.030
5.547
425.097
128381.762
26193.278 | 229506,881
541,069
458,264
82,805
5,534
424,173
128485,414
26214,873 | 229330.443
531.847
454.902
52.944
5.484
420.397
128812.481
26272.787 | 230462.094
541.995
459.444
82.551
5.566
425.210
127799.060
26098.895 | 229979,500
540,848
457,922
82,927
5,522
475,222
128559,885
26226,979 | 195,000
231009,039
543,541
460,319
83,221
5,531
425,40d
105333,570
22019,749 | 728092.658
540.123
457.351
82.767
5.526
423.409
105584.223
22060.622 | 228322.387
537.892
454.253
81.639
5.564
420.799
106637.791
22124.760 | 230173.885
541.716
459.590
82.126
5.590
424.898
104775.874
21952.328 | 229509.025
539.852
457.311
82.540
5.541
425.139
105651.848
22070.043 | | 150.000
231234.395
543.731
460.442
83.249
5.524
425.274
126077.045
25776.041 | 229603.564
539.780
457.114
82.565
5.535
425.365
126194.465
25799.479 | 229500-066
538-154
455-373
82.781
5-501
426-667
126530-103
25657-905 | 230768.443
542.790
460.209
82.581
5.573
425.152
125496.728
25684.061 | 230114.375
540.555
457.643
#2.912
5.520
425.702
126269.239
25811.155 | 200.000
230551.609
543.355
460.317
83.037
5.544
424.863
103024.166
21002.366 | 228768.250
540.052
457.294
82.759
5.526
423.374
103275.668
21645.258 | 2288441.367
530.698
453.918
62.780
5.483
420.337
103761.566
21715.750 | 230144.672
341.626
459.491
82.134
5.994
424.914
102475.980
21537.922 | 229553,555
\$40.035
457.177
82.858
5.518
425.075
103362.134
21654.458 | | 155.000
231068.311
543.573
460.549
83.044
5.546
425.076
123772.859
25358.835 | 228834.617
539.074
456.320
82.754
5.514
424.496
123905.771
25383.896 | 228913.041
530.453
454.351
82.103
5.534
420./16
124258.478
25443.600 | 230834.613
542.973
460.394
82.579
5.575
425.131
123195.016
25269.102 | 229605.320
539.707
457.073
82.634
5.531
425.429
123979.035
25395.444 | 205.003 • 230.795.479 243.241 460.198 83.042 3.542 +24.843 100.725.702 21184.892 | 228586.463
539.954
457.291
82.663
5.532
423.344
101009.271
21230.025 | 228590.844
533.671
453.606
84.065
5.527
425.730
101489.730
21300.543 | 230114.650
541.535
459.392
82.142
5.593
424.931
100176.581
21123.473 | 229322.426
539.622
457.032
82.590
5.534
424.974
101074.900
21238.487 | | 160.000
230954.521
543.327
460.291
83.037
5.543
425.073
121469.287
24941.601 | 229090,502
539,845
457,221
82,624
5,534
424,363
121017,765
24968,459 | 229148.635
530.770
454.850
81.920
5.552
426.903
121981.846
25029.514 | 230900.051
543.156
460.580
82.576
5.578
425.103
120896.373
24854.159 | 229731.219
539.451
457.454
82.527
5.543
425.447
121689.631
24979.858 | 710.000
230675.832
543.143
460.262
82.486
5.553
94.102
98427.320
20167.330 | 228755.828
539.485
457.009
82.476
5.541
424.027
78723.271
20014.707 | 228450.945
533.991
452.853
83.138
5.447
426.221
49214.932
20284.644 | 230084.615
541.444
459.293
82.150
5.591
424.947
97877.677
20708.984 | 229/94.199
539.541
456.768
82.833
5.514
424.983
98788.578
20422.229 | | 165,000
230989,846
543,392
460,291
83,101
5,539
425,039
119166,410
24524,561 | 539,865
457,143
82,722
5,526 | 229330,332
537,607
453,156
32,451
5520
426,576
119700,839
24610,323 | 230965.398
543.338
460.766
92.572
5.580
425.986
113534.804
24439.234 | 229H87.9^6 | 20349.645 | 539.392
456.766
82.627
5.526
424.009 | 22861U.787
535.940
453.457
92.483
5.498
420.501
96949.517
20469.758 | 541.353
459.194
82.158
5.589
424.963
9579.271 | 229316.453
539.415
456.742
82.604
5.573
425.108
96502.114
20406.248 | | 543.143
460.099
83.043 | 539,130
456,576
82,555 | 530.006
45>,537
82,469 | 230644.340
542.533
460.011
82.519
5.575
425.127
116281.285
24024.485 | 457.404
82.619
5.532
425.724
117114.592
24148.969 | 0.10 50 | 538.122
455.839 | 535.191
453.043
82.147
5515
426.707
94681,165
20055.758 | 541.263
459.095 | 538.679
456.223 | | 175.000 | 229298.293
540,415
457.666
82.749
5.531 | 229230.768
537.425
454.853
82.572
5.509
420.535
115160.104 | 230595.604
542.418
457.917
82.501
- 5.575 | 229879.957
540.611
457.815
82.796
5.529
425.263
114020.157
23733.313 | 542.827
459.754
83.063 | 536.629
456.012
82.617 | 453.613 | 542.138
459.906
82.232 | 539.112
456.463
82.649
5.523 | | | | | | | | | | | | ## TABLE AP 1-2 (Sheet 4 of 6) ENGINE PERFORMANCE PROGRAM (PA49) | | 230.000
230503.969
542.771
459.812
82.959
5.554
424.680
89214.864
19095.469 | 228 702.451
538.175
455.857
82.318
5.538
424.959
89586.639
19153.368 | 228408.264
\$33.716
452.680
83.036
5.452
420.361
90146.851
19227.176 | 230433.051
542.776
460.009
82.257
5.592
424.944
88680.671
19050.197 | 229204.893
538.887
456.116
82.771
5.511
425.333
89649.457
19158.671 | | 280.000
197673.564
461.695
382.803
78.892
4.852
428.144
67307.204
14964.596 | 195816, 906
459, 894
381, 518
78, 375
4,868
425, 785
67742, 255
15048, 131 | 195879.963
455.636
374.232
.77.404
4.886
429.904
68473.479
15140.815 | 212172.150
496.622
416.203
80.419
5.175
427.230
65864.005
14908.052 | 196456,310
459,075
380,851
78,224
4,869
427,946
67840,979
15051,181 | |---|---|---|---|---|--|----|--|---|---|--|---| | | 235.000
230600.984
542.875
459.773
83.142
5.579
424.777
86914.289
18077.114 | 229006.896
538.612
456.255
82.357
5.540
425.179
67304.299
18738.299 | 228783.252
5.0.602
453.683
32.919
5.471
420.356
57879.477
18813.375 | 230490.613
542.395
460.113
82.282
5.592
424.950
86378.165
18635.091 | 2294A3.707
519.363
456.557
82.806
5.516
425.437
87366.021
18742.929 | | 285.009
195417.090
195417.095
377.873
78.422
4.818
428.269
65403.444
14569.508 | 192695.625
452.095
374.304
77.791
4.812
426.228
65852.866
14055.661 | 192069.266
448.044
370.756
74.288
4.797
430.003
66599.131
14751.920 | 202899.924
473.966
395.058
78.928
5.005
428.071
63837.799
14507.793 | 193590,972
452,145
374,311
77,834
4,809
428,166
65951,721
14659,030 | | | 240,000
230424,545
542,545
459,499
83,046
5,533
424,711
84614,110
18258,824 | 228199.469
538.222
455.887
82.335
5.537
423.487
85023.039
18323.170 | 228022.301
534.413
452.011
82.402
5.485
420.078
85612.649
18399.684 | 230773.107
542.774
460.167
82.607
5.571
425.174
84075.267
18219.939 | 228892.104
536.393
455.799
82.599
5519
425.126
85083.266
18327.232 | | 290.000
193680.838
451.91
373.634
78.284
4.773
428.575
63522.610
14176.034 | 190606.422
447.172
369.456
77.716
4.754
426.249
63992.992
14265.815 | 190545.420
443.047
365.763
77.264
4.733
430.096
64755.215
14364.452 | 196688.055
458.43d
381.030
77.907
4.691
428.572
51898.172
14113.855 | 191611.891
447.379
169.618
77.761
47.761
428.303
64090.272
14268.769 | | | 245.000
230887,357
543,644
460,420
83,224
> 532
424,703
82313,562
17840,345 | 228670,785
538,728
456,218
82,510
5,529
424,464
82,743,814
17908,275 | 228514.117
535.852
453.154
82.698
5.480
426.450
43344.206
17986.666 | 230805.287
542.472
460.273
82.598
5.572
425.156
81771.967
17504.870 |
229357,41d
139,408
456,598
82,811
5,514
425,290
82301,859
17411,762 | | 295.000
19273.400
448.692
370.746
71.894
4.760
428.551
61660.324
13783.991 | 189353.791
443.420
366.154
77.265
4.739
427.031
62152.583
13877.192 | 189121./79 439./09 362.174 7/.534 4.671 430.107 62930.924 1397/.902 | 193030.309
450.000
372.667
77.333
4.819
428.956
60013.168
13723.793 | 190254,324
443,940
360,375
77,565
4,723
428,563
62247,944
13879,692 | | | 250.000
230747.621
543.445
460.345
83.100
5.540
424.601
80004.043
17421.088 | 228871.473
539.806
457.468
82.338
5.556
423.989
80456.938
17492.625 | 228680.881
530.122
453.617
82.505
5.498
420.557
81070.898
17573.886 | 23nd37.447
542.969
460.381
82.589
5.574
425.139
79468.133
17389.846 | 229435.372
539.791
457.143
82.64d
5.531
425.049
80514.300
17496.066 | | 300.000
191050.074
446.103
368.959
77.234
4.777
428.174
59809.043
13392.747 | 188645.484
442.036
364.767
77.268
4.721
426.765
66322.583
13489.381 | 188304.074
434.108
360.371
77.737
4.036
429.950
61119.355
13590.129 | 190125.143
443.736
367.571
76.166
4.826
428.464
58161.987
13335.994 | 189353.408
442.112
364.679
77.413
4.711
428.298
60416.993
13470.752 | | | 255,000
229794,588
540,678
457,140
83,538
5,472
425,012
77710,004
17002,380 | 227536.068
537.280
454.600
82.680
5.498
424.055
78172.430
17076.724 | 227712.613
533.799
451.315
82.683
5.454
426.435
78800.471
17154.162 | 230494.393
542.108-
459.578
82.530
5.569
425.182
77167.554
16975.074 | 228446.754
437.319
454.352
42.967
5.476
425.167
78229.768
17079.089 | | 305.000
190542-945*
444.87:1
367.51;77.30:1
4.754
428.360
57966.001
13001.73; | 107396.508
439.516
363.027
70.489
4.746
426.370
58501.229
13102.252 | 187260.490
434.634
356.427
76.207
4.703
430.860
59323.294
13201.529 | 189052.568
440.120
364.142
75.978
4.793
426.639
56311.313
12949.262 | 148401.944
439.657
362.991-
76.666
4.735
428.530
58596.871
13101.840 | | • | 260.000
223924.535
525.802
442.744
83.056
5331
425.873
75451.570 | 222631.795
575.765
443.464
82.301
5,388
423.444
75924.387
16062.443 | 222534.674
521.162
437.245
81.917
5.362
426.997
76575.120
16746.202 | 230445.689
542.000
457.492
82.508
5.569
425.177
74867.687
16560.425 | 223039.332
524.223
441.818
82.425
5.350
425.438
75983.601
16663.867 | • | 310.000
190120-262
443.885
360.74d
7/.140
4.754
428.367
56128.859
12011.180 | 187199, 936
439, 783
363, 487
76, 296
4, 764
425, 664
5668, 719
12715, 557 | 186837.533
433.859
357.324
70.535
4.669
430.752
57530.357
12813.706 | 187737.891
437.860
361.984
75.876
77.1
428.763
54514.366
12563.288 | 188068.574
439.177
362.520
76.657
4.779
428.241
56761.637
12713.491 | | | 265.000
214601.4nd
502.92/
421.3n1
81.62/
5.151
426.7n5
73295.073
16189.990 | 714324.076
506.028
424.442
81.586
5.202
423.542
73754.913
16251.125 | 214136.553
501.393
419.773
81.620
5143
427.068
74427.899
16335.835 | 230396.750
541.891
459.404
82.446
5.569
425.172
72564.257
16145.865 | 214354,676
503,449
421.838
81.611
5.169
425,778
73825.961
16252,317 | | 315.000
187578.612
442.872
365.767
77.057
4.747
.28.331
54295.222
12220.097 | +38.214
362.024
76.189
4.752
+26.615
54874.120 | 186592.947
433,348
355.267
76.81
4.644
430,290
55741.103
12426.804 | 187257.164
436.053
360.808
75.345
4.757
428.547
52705.692
12177.696 | 187741.012
438.129
361.453
76.676
4.714
428.515
54970.147
12325.609 | | | 270.000
206709.791
483.810
403.523
80.287
5.079
427.259
71231.204
15763.117 | 200840,014
488.081
407,631
80,450
5,067
423,782
7668,431
15643,949 | 206/90.783
484.947
405.134
79.813
2.051
428.198
77364.411
15930.039 | 230051.418
540.959
458.395
82.564
5.552
425.266
70270.120
15731.363 | 206782.195
484.946
404.762
80.184
5.048
426.411
71754.348
15445.702 | •. | 320.903
18981>.697
442.997
365.580
77.322
4.728
4.728
5244.004
11630.227 | 438.510
362.286
76.223
4.753
426.188
53064.015 | 186834.641
433.180
357.631
70.549
4.734
431.305
53957.193
12038.656 | 187985.795
436.197
360.332
75.865
4.750
428.902
50900.862
11792.147 | 187945.277
438.179
361.834
75.365
4.738
428.697
53161.737
11937.395 | | • | 275.000
201370.197
477.785
391.464
79.377
4-931
427.733
69243.954
15362.013 | 200034,133
470,108
390,790
79,318
4,927
425,507
59073,234
15443,803 | 200057-172
460-212
387-025
78-588
4-532
429-108
70389-594
15534-520 | 574,267
442,086
82,181
5,379
426,270 | 200486.500
469.035
389.941
79.074
4.930
427.449
69768.928
15446.114 | | 325.000
189650,872
442.672
365.533
77.135
4.739
423.423
50633.631
11439.747 | 187242,840.
438,181
361,898
76,283
4,744
427,318
51254,553 | 136920.466
434.166
357.277
705889
4.047
430.727
52168.851
11654.895 | 187055.688
436.084
360.184
75.900
4746
424.945
49097.494
11406.503 | 438.340
351,570 | ## TABLE AP 1-2 (Sheet 5 of 6) ENGINE PERFORMANCE PROGRAM (PA49) | 330.000
189571.525
442.498
365.402
77.096
4.740
428.412
48802.897
11049.183 | 18702d.760
437.548
361.280
76.267
4.737
427.448
49444.703
11171.256 | 18663d. 914
433.690
357.313
70.376
4.678
430.812
50379.363
11267.342 | 187097.633
436.151
360.214
75.936
4.744
424.975
47294.370
11020.715 | 187813.054
437.912
361.331
76.580
4.718
428.871
49542.320
11162.593 | 380.000
188597.887
439.815
362.570
77.247
4.654
424.dd9
30559.279
7143.306 | 1×5733.650
•34.963
358.869
76.095
4.716
427.470
31389.184
7314.122 | 185d3/,215
430,990
355.172
75.818
4.685
431.187
32562.533
7402.244 | 187227.805
436.293
360.192
76.100
4.733
429.134
29233.153
7157.318 | 186789.5-2
435.757
356.870
76.347
4.678
429.155
31503.648
7286.558 | |---|--|---|---|--|--|---|---|---|---| | 335.000
189691.801
442.759
365.602
7/.15/
4.736
428.431
46972.662
10658.549 | 185864.348
437.706
361.291
76.415
4.726
426.917
47634.567
10/85.201 | 106663.916
433.215
350.300
76.415
4.669
430.381
48591.166
10831.603 | 187175.697
436.315
300.348
75.967
4.743
428.992
45490.807
10634.813 | 187740.020
437.893
361.231
76.662
4.712
425.743
47732.798
10775.118 | 385.000
188356.709
439.360
362.284
77.070
4.709
428.707
28745.203
6753.030 | 186001.182
435,553
359,461
76.112
4.723
427,046
29591.804
6929.092 | 185700.520
431.073
354.543
76.530
4.633
430.799
30789.677
7010.638 | 187099.086
435.974
359.884
76.090
4.730
429.152
27430.808
6770.888 | 186697.801
435.329
358.756
76.573
4.685
428.351
29708.895
6899.255 | | 340.000
189772.334
442.847
365.583
77.204
4.732
428.528
45141.814
10267.606 | 186971.557
436.818
360.685
76.133
4.738
428.030
45824.765
10399.213 | 186784.201
433.509
357.187
76.321
4.680
430.866
4804.269
10490.539 | 187273.559
436.540
360.539
76.001
4.744
429.007
43686.416
10248.795 | 187842.695
437.725
361.152
76.573
4.716
429.141
45923.615
10387.786 | 390.000
188278.563
439.169
362.107
77.062
4.699
428.715
26931.912
6362.910 | 185552.203
434.811
356.825
75.986
4.722
426.742
27/94.101
6544.031 | 185200.357
429.888
353.361
70.527
4.617
430.824
29017.378
6628.331 | 186974.541
435.667
359.588
76.079
4.726
429.169
25629.964
6384.514 | 186345.615
434.623
358.096
76.525
4.610
428.761
27914.464
6511.757 | | 345.000
189613.117
442.539
365.371
77.165
4.735
428.466
43313.141
9876.907 |
186656.818
437.235
361.067
76.168
4.740
426.903
44014.617
10013.106 | 150378.834
432.078
350.169
70.509
4.055
430.757
45018.105
10104.595 | 1873 YU. 668
436. 780
360. 751
76. 035
4.745
429. 022
41881. 005
9362. 652 | 187549.588
417.494
360.869
70.615
4.710
428.709
44115.247
9999.536 | 395.000
188502.001
439.71U
362.510
77.100
4.703
428.676
25118.363
5972.600 | 185496,555
434,706
358,724
75,982
4,721
426,717
25,977,892
6159,765 | 105167.201
424.762
353.302
70.460
4.621
430.300
27240.113
6241.860 | 16Ad33.523
435.320
359.253
76.066
4.723
429.187
23d30.677
5996.198 | 186388.604
434.726
358.212
76.514
4.642
428.756
26120.769
6124.573 | | 350.000
189374.566
441.832
364.701
7/.131
4.778
428.499
41485.209
9486.18d | 186419.168 437.639 361.406 76.233 4.741 425.966 42204.945 9627.040 | 186123.307
431.987
350.552
76.435
4.652
430.854
43231.898
9722.229 | 187523.387
437.082
361.007
76.076
4.745
429.034
40074.459
9470.374 | 187289.018
437.153
460.553
76.600
4.707
428.439
42307.351
9611.819 | 400,000
188379,967
439,419
362,345
77,073
4,701
428,703
23303,967
5582,427 | 18603G.227
435.376
359.318
76.058
4.724
+27.287
24199.777
5774.529 | 165092.932
431.145
354.449
76.696
4.621
430.697
25474.050
5655.279 | 186681.000
434.945
358.892
76.052
4.719
429.206
22033.168
5611.951 | 186/01.057
435.313
358.704
76.609
4.632
428.896
24325.931
5737.412 | | 355.000
189420.098
441.894
364.592
77.302
4.710
428.655
39659.408
9095.514 | 186525.679
437.237
361.151
76.086
4.747
426.601
40.97.737
9241.367 | 186215, 144
432, 237
355, 170
70, 467
4, 653
430, 818
41449, 476
9335, 565 | 187645.537
437.360
361.250
75.110
4.745
429.041
38266.571
9089.935 | 187387-130
437-123
360-505
76-618
4-705
428-671
40502-207
9224-149 | 405.000
188110.33+
436.747
361.715
77.032
4.690
428.744
21.91.564
5192.184 | 165664.869
434.386
358.289
76.097
4.708
427.419
22404.256
5389.211 | 105+04.527
430.198
353.700
76.490
+.627
430.775
23703.761
5400.563 | 186547.805
434.625
358.595
76.030
4./17
429.216
20237.330
5225.797 | 186393.242
434.510
357.971
76.539
4.677
428.920
22533.104
5349.993 | | 360.000
189241.742
441.571
364.407
77.165
4.722
428.564
37833.830
8704.784 | 186744.791
436.374
360.114
76.259
4.722
427.947
38591.336
8855.628 | 186542.391
432.993
356.531
76.462
4.663
430.829
39657.066
8946.715 | 187674.531
437.420
361.296
76.124
4.746
429.049
36457.922
8703.390 | 187510.807
436.979
360.351
76.629
4.703
429.113
36697.410
8836.375 |
410.000
188983.877
436.087
361.655
77.031
4.695
428.743
19481.695
4802.218 | 185021.607
434.082
355.070
76.011
4.711
426.237
20610.137
5004.152 | 184630.625
42d.366
351.965
76.602
4.595
430.822
21930.462
5074.521 | 186462.818
434.422
354.410
76.012
4.715
429.221
18442.693
4839.743 | 185913,703
433,778
357,230
75,546
44667
428,600
20742,745
4961,966 | | 365.000
189138.736
441.255
364.040
77.215
4.715
428.638
36010.757
8314.173 | 185983.166
436.597
360.531
76.066
4.740
425.984
36785.949
8470.150 | 185692.760
430.925
356.609
70.316
4.647
430.894
37887.222
3561.534 | 187609.213
437.250
361.128
76.123
4.744
429,066
34649.619
9316.815 | 186934.885
436.259
359.727
76.532
4.770
428.505
36894.643
8448.619 | 415,000
187/71-273
337,943
360,983
76,959
4,691
428,757
17873,490
4412-259 | 185309,430
434.037
358.035
75.997
4.711
420.949
18816.670
4019.359 | 155084.342
429.399
353.280
70.119
4.641
431.032
20169.595
4692.996 | 70.001
4.715
429.221
16643.668 | 186055.154
433.791
357.433
76.358
4.691
428.913
18953.2N2
4574.868 | | 370.000
188785.002
440.48+
363.415
77.069
4.715
428.555
34190.08d
7923.622 | 185936,451
436,152
560,044
76,108
4,731
26,311
34985,175
8084,650 | 165783.574
430.842
355.025
75.817
4.653
431.210
36109.337
8175.034 | 187485.500
436.940
360.827
76.113
4.741
429.088
32842.526
7930.272 | 186835,008
435,876
357,475
76,331
4,710
428,712
35094,860
8061,172 | 420.000
187158.899
437.141
360.188
76.950
4.690
48.820
16066.524 | 185/02,703
+34,016
+38,023
75,993
+,711
+26,718
17023,711
4234,658 | | 186456.375
434.411
354.416
75.994
4.716
429.217
14854.600
4067.827 | 185871.432
433.437
357.058
76.379
4.675
425.839
17164.328
4183.500 | | 375.000
188443.535
439.042
362.611
77.031
4.707
428.627
32373.448
7533.424 | 185750,744
434.697
358.517
76.180
4.706
427.311
33186.371
7699.394 | 185592.955
430.442
354.464
76.037
4.661
431.166
34335.714
7788.234 | 187354.248
436.619
360.509
76.105
4.737
429.111
31037.059
7543.782 | 186595.742
434.927
358.511
76.416
4.691
429.036
33288.844
7673.684 | 425.000
187483.922
437.175
360.175
76.980
4.679
428.853
14261.753 | 185101.361
-32.701
356.746
75.955
-4.697
-427.782
15233.848
3850.281 | 420.375
352.705
70.171
4.530 | 434,526
358,528
.75,997
4,718 | 432.917
355.548
76.359 | | | | ¥ | | | | | | | | ## TABLE AP 1-2 (Sheet 6 of 6) ENGINE PERFORMANCE PROGRAM (PA49) | 430.000
187408.36/
437.014
360.076
76.939
4.680
428.838
12457.882
3242.995 | 185023.924
433.769
357.810
75.959
4.711
426.549
13443.493
3465,816 | 184991.344
428.624
353.407
75.217
4.699
431.594
14871.502
3539.675 | 186566.523
434.664
358.661
76.003
4.719
429.220
11264.915
3295.950 | 185807.855
433.136
357.098
76.038
4.696
428.994
13590.959
3416.162 | 458.200
188548.803
439.798
362.754
77.044
4.708
428.717
2760.456
1044.664 | 185913.154
435.384
359.352
76.032
4.726
426.780
3327.597
1297.932 | 18563U.242
43U.471
354.578
75.893
4.672
431.225
4674.136
1376.206 | 186966.145
435.618
359.641
75.977
4.734
429.197
1129.492
1120.004 | 18664.064
435.218
358.895
76.323
4.702
428.908
3494.063
1239.601 | |--|---|---|---|---|---|--|--|--|--| | | | | | | | | | | | | 435.000
187472.184
437.174
360.240
76.933 | 185444.176
433.809
357.803
76.006 | 185336.707
429.619
353.945
75.674 | 186627.877
434.803
358.795
76.008 | 186084.354
433.534
357.329
76.204 | 458.300
188558.512
439.821
362.774
77.04/ | 185893, 768
435,397
359,374
76,024 | 185678,336
430.677
354.628
76.048 | 186970.137
435.628
359.650
75.977 | 186710.203
435.298
358.925
76.373 | | 4.692
428,828
10654.196
2853.316 | 4.708
427.479
11652.856
3081.270 | 4.677
431.398
13104.408
3156.430 | 4.721
429.224
9469.089
2909.972 | 4.689
429.235
11803.820
3030.339 | 4.708
428.715
2224.136
1036.862 | 4,727
426,952
3291,617
1290,233 | 4.063
431.132
4858.633
1368.505 | 4.734
429.197
1093.483
1112.287 | 4.700
428.933
3458.129
1231.867 | | 440,000
187581.803
437.456
360.528
76.928
4.687
428.802
8850.356 | 185418.488
433.999
358.126
75.864
4.721
427.241
9861.949 | 185218,307
429.528
353.639
75.890
4.660
431.213
11339.103
2771.665 | 186641.225
434.844
358.861
75.983
4.723
429.214
7672.734
2524.041 | 186072.853
433.658
357.431
76.227
4.679
429.085
10017.136
2644.036 | 458,400
188575,732
439,857
362,799
77,057
4,703
428,721
2187,814
1029,061 | 185839,191
435,995
359,929
76,066
4,732
420,242
3255,608 | 185575.145
430,436
354.339
70.148
4.653
431.083
4823.156
1360.794 | 186974.016
435.637
359.659
75.978
4.734
429.197
1057.474
1104.570 | 186663.354
435.446
359.022
75.424
4.698
428.692
3422.193 | | 2463.718 | 7696.725 | 2//1.005 | 2224.041 | 2644.030 |
1054.091 | 1282.533 | 1300.794 | 1104.570 | 1224.129 | | 445.000
187862.580
438.137
361.180
76.957
4.693
428.776
7043.943 |
185119.037
433.986
358.157
75.829
4.723
426.555
8070.009 | 184945.852
428.774
353.135
75.038
4.669
431.337
9573.382 | 186638.914
434.845
358.889
75.956
4.725
429.208
5876.193 | 185975.822
433.632
357.491
76.141
4.675
428.839
8229.112 | 458.500
188586.113
439.884
362.825
77.054
4.708
428.718
2151.492 | 185826.998
436.073
359.980
76.093
4.731
426.137
3219.567 | 185576.756
430.595
254.417
76.168
4.653
430.988 | 186977.908
435.646
359.667
75.979
4.734
429.197
1021.466 | 186663.363
435.514
359.074
76.440
4.697
428.615
3386.244 | | 2074.03/ | 2312.540 | 2386.687 | 7139.243 | 2257,755 | 1021.256 | 1274.828 | 1353.082 | 1096.854 | 1216.349 | | 450.000
187958.227
438.375
361.420
76.955
4.697
428.762
5234.780
1684.192 | 185350.158
434,648
358,656
75,992
4.720
426,437
6275,701
1928,349 | 185357.434
424.348
354.304
75.045
4.721
431.718
7809.002
2004.028 | 186674.307
434.937
359.004
75.933
4.728
429.199
4079.339
1752.575 | 186221.938
434.174
358.175
75.997
4.712
428.972
6437.850
1871.856 | 458.600
188563.381
439.954
362.824
77.030
4.710
428.676
2115.163
1013.455 | 185883.830
435,440
359,369
76.071
4.724
426.888
3183.559
1267.125 | 18569/.453
430.870
354.792
76.078
4.664
430.983
4752.150
1349.378 | 186981.807
435.655
359.675
75.979
4.734
429.197
985.453
1089.137 | 186714.887
435.388
358.995
76.393
4.699
428.855
3350.291
1200.653 | | 455.000
188496.361
439.660
362.600
77.054
4.700
428.732
3422.230
1294.309 | 185491.863
435.381
359.521
75.860
4.739
426.045
4479.113
1544.091 | 185484.139
429.574
354.675
74.899
4./35
431.786
6030.416
1620.668 | 186838,508
435,320
359,363
75,957
4,731
429,198
2281,305
1366,908 | 186490.785
434.872
358.934
75.938
4.727
428.855
4643.920
1486.356 | 458.700
188559.684
439.841
362.868
77.032
4.710
428.700
7078.838
1005.657 | 185819.295
435.378
359.336
76.041
4.726
426.800
3147.580
1259.423 | 185670.135
430.661
354.796
75.865
4.677
431.128
4710.627
1337.695 | 186985.717
435.664
359.684
75.980
4.734
427.197
949.441
1081.420 | 186683.035
435.293
358.990
76.313
4.704
428.876
3314.348
1200.925 | | 458.000
188545.852
439.816
362.795
77.021
4.710
428.693
2337.09/
1060.265 | 185884.654
435.444
359.376
76.068
4.724
426.885
3399.554
1313.335 | 185693.461
430.696
354.696
76.090
4.667
431.148
4965.138
1391.577 | 186958,158
435,600
359,624
75,976
4,733
429,197
1201,508
1135,438 | 186707,986
435,319
358,955
76,363
4,701
428,909
3565,930
1255,059 | 458.300
188558.703
440.000
362.868
77.132
4.705
428.770
2042.513
997.853 | 185809,777
435,360
359,324
76,036
4,726
426,795
3111,603
1251,723 | 185783.365
430.479
355.193
75.286
4.718
431.574
4681.066
1330.071 | 186989.635
435.673
359.692
75,980
4.734
429.197
913.428
1073.703 | 186750.613
435.230
359.128
76.151
4.716
429.046
3278.394
1193.216 | | 458.100
188537.475
439.784
362.754
77.029
4.709
428.705
2296.774
1052.465 | 185816.938
435.424
359.366
76.059
4.725
426.749
3363.576
1305.633 | 18563>.137
430.478
354.573
7>.904
4.671
431.231
4929.638
1383.891 | 186952.146
435.609
359.633
75.976
4.733
429.197
1105.499
1127.721 | 186663.172
435.229
358.898
76.331
4.702
428.895
3529.996
1247.329 | 458,835
188765.133
440.154
362.905
77.749
4.69d
428.861
2029.797
995.119 | 178871.035
434.709
359.280
75.428
4.764
411.430
3099.019
1249.969 | 178745.318
411.706
339.485
72.221
4.701
434.178
4669.263
1327.532 | 186990.990
435.676
359.695
75.981
4.734
429.197
900.823
1071.002 | 182127.160
428.856
353.890
74.966
4.721
424.823
3266.026
1190.573 | ## TABLE AP 2-1 (Sheet 1 of 2) ABBREVIATIONS | ITEM | TERM | ITEM | TERM | |-------|--------------------------------------|--------------------|---------------------------------| | ac | Alternating current | F | Fahrenheit, thrust | | Act | Actuator | FCI | Flight Critical Items | | APS | Auxiliary Propulsion | F1t | Flight | | | System | ft | Feet | | ASI | Augmented Spark Igniter | FM | Frequency modulation | | attch | Attach | FTC | Florida Test Center | | Aux | Auxiliary | Fwd | Forward | | Btu | British thermal unit | GG | Gas generator | | Bgr | Bridge gain ratio | GH2 | Gaseous hydrogen | | Cfm | Cubic feet per minute | GIS | Ground Instrumentation | | Contr | Control | | System | | cps | Cycles per second | GN 2 | Gaseous nitrogen | | db | Decibel | gpm | Gallons per minute | | dc | Direct current | GSE | Ground support equip- | | DDAS | Digital Data Acquisi-
tion System | He | ment
Helium | | deg | Degree | Hg | Mercury | | DER | Digital Events Recorder | н ₂ о | Water | | Disch | Discharge | hr | Hour | | DNA | Data not available | hp | Horsepower | | D/O | Dropout | Hyd | Hydraulic | | DPF | Differential Pressure | Hz | Hertz | | * 4 | Feedback | in. | Inch | | EBW | Exploding bridgewire | IP&CL | Instrumentation Program | | ECC | Engine Cutoff Command | | and Component List | | ECO | Engine Cutoff | $^{\mathrm{I}}$ sp | Specific Impulse | | EDS | Emergency Detection System | IU . | Instrument Unit | | E/I | External/Internal | K | $Kilo = 1,000 \text{ or } 10^3$ | | EMI | Electromagnetic | . Kc | Kilocycle | | · | Interference | KSC | Kennedy Space Center | | EMR | Engine Mixture Ratio | 1bf | Pounds force | | ESC | Engine Start Command | 1bm | Pounds mass | | | | | | # TABLE AP 2-1 (Sheet 2 of 2) ABBREVIATIONS | ITEM | TERM | ITEM | TERM | |-------|--|---------------------------------|-------------------------------------| | LH2 | Liquid Hydrogen | Ref1 | Reflected | | Loc | Location | Reg | Regulator | | LOX | Liquid oxygen | RF | Radio Frequency | | M&A | Manufacturing and | RMR | Reference Mixture Ratio | | | Assembly | RPM | Revolutions per minute | | ms | Millisecond | RSS | Root sum square | | MSFC | Marshall Space Flight
Center | SAI | Special Attention Items | | NASA | National Aeronautics and Space Administra- | SCC | Standard cubic centimeter | | | tion | SCI | Standard cubic inch | | N/A | Not applicable | scim | Standard cubic inch per | | NPSH | Net positive suction head | scfm | minute | | PCM | Pulse code modulation | SCIII | Standard cubic foot per minute | | PDT | Pacific Daylight Time | sec | Second | | pf | Picofarad | sps | Samples per second | | Posit | Position | STC | Sacramento Test Center | | pps | Pulses per second - | sw | Switch | | Press | Pressure | Syst | System | | psi | Pounds per square inch | T_0 | Simulated liftoff | | psia | Pounds per square inch, | TAN | Tangential | | | absolute | Temp | Temperature | | psid | Pounds per square inch, differential | T/M | Telemetry | | psig | Pounds per square inch, | TP&E | Test Planning and
Evaluation | | PST | gauge Pacific Standard Time | Vac | Volts alternating current (100 vac) | | Pt | Point | V | Volts | | P/U | Pickup | VCL | Vertical Checkout | | PU | Propellant Utilization | | Laboratory | | Pwr | Power | vdc | Volts direct current | | R | Rankine | Vib | Vibration | | RACS | Remote Analog Checkout
System | vswr | Voltage standing wave ratio | | RAD . | Radial | $\dot{\mathbb{W}}_{\mathrm{T}}$ | Total flowrate | Distribution List ### DISTRIBUTION LIST ## HUNTINGTON BEACH (A3) | K010 | Senior Director - Saturn/Apollo Programs | |------|--| | KW00 | Director - Saturn System Development | | K100 | Director - Saturn Development Engineering | | KYC0 | Manager - Saturn Program Production | | HAAA | Manager - Vehicle Flight Readiness | | KWA0 | Supervisor - Saturn System Development | | | (Rockerdyne) via J. Boyde (KCDE) | | KN00 | Deputy Chief Design Engineer - Saturn Development | | KA00 | Chief Engineer - Mechanics & Reliability | | KAB0 | Branch Chief - Structural Mechanics | | KAC0 | Branch Chief - Flight Mechanics | | KC00 | Chief Engineer - Propulsion | | KCB0 | Branch Chief - Propulsion Analysis | | KCBC | Propulsion Performance and TP&E - Analysis | | KCC0 | Deputy Branch Chief - Propulsion Design | | KCD0 | Branch Chief - Propulsion Test | | KCDE | Chief Engineer - Saturn Electronics | | KDBA | Section Chief - Electronics TP&E | | KDCA | Branch Chief - Electronic-Stage Design | | L110 | Chief - Engine Data Reduction Engineering | | KEC0 | Branch Chief - Computing Engineering | | KADO | Branch Chief - Reliability Engineering (2) | | KF00 | Chief Engineer - Vehicle Checkout Laboratory | | KKB0 | Project Engineer - Test | | KKBA | Assistant Project Engineer - Test Special Products | | KKBJ | Assistant Project Engineer - Test | | 5284 | Library | | KEBG | Records | ## S-IVB TP&E COMMITTEE MEMBERS (A3) | AFD3 | Materials Research/Production Methods | |------|---------------------------------------| | KBDB | Structural Mechanical | | KCBC | Propulsion Performance and TP&E | | KDBA | Electronics | | KKBJ | TP&E - Static Test | ## PROPELLANT UTILIZATION PANEL (A3) KKBH PU Panel Chairman - TP&E ## FLORIDA TEST CENTER (A41) | HE00 | Μ. | F. | Cooper | | |------|----|----|---------|-----| | K0C0 | Η. | Τ. | Gardner | (2) | | KKG0 | R. | S. | Spain | | | KKG0 | Η. | Н. | Nichols | | ## DISTRIBUTION LIST (Continued) ## SACRAMENTO TEST CENTER (A45)
KKH0 R. J. Mohr (2) KKHO C. E. Ausley ### MANNED SPACE CENTER (A57) K010 R. A. Ammons ### MARSHALL SPACE FLIGHT CENTER (A61) KBDB W. E. Naymola (3) ### NASA/MARSHALL SPACE FLIGHT CENTER H. S. Garrett (17) TP&E - Files (5)